First Principle Study of Na and P Co-Doped Heptazine Based Monolayer g-C3N4

Article Preview

Abstract:

Elements doping is a powerful way to alter the electronic structure and enhancing the photo catalytic activity of materials by relaxing the surrounding chemical bonds and forming new chemical bond. In this work, we have performed, the first principle density functional theory calculations to investigate the geometric, electronic and optical properties of pristine, Na-doped and P-doped as well as Na and P (Na/P) co-doped heptazine based monolayer graphitic carbon nitride (g-C3N4). The co-doping process results in significantly narrow band gap of g-C3N4. The optical absorption shows better visible-light response compare to pristine g-C3N4. After doping the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) show strong delocalization and indicates photo generated electron/hole (e-/h+) pair disunion abilities of doped systems are superior than pristine heptazine based monolayer g-C3N4. Thus the co-doping with Na and P elements is an effective technique to boost the photocatalytic performance of heptazine based monolayer g-C3N4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-376

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. Photobiol. C 11 (2010) 179-209.

DOI: 10.1016/j.jphotochemrev.2011.02.003

Google Scholar

[2] Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environ. Sci., 6 (2013) 347-370.

DOI: 10.1039/c2ee22618a

Google Scholar

[3] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films 605 (2016) 2-19.

DOI: 10.1016/j.tsf.2015.12.064

Google Scholar

[4] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two- electron pathway, Science 347 (2015) 970-974.

DOI: 10.1126/science.aaa3145

Google Scholar

[5] Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review, Nanoscale 7 (2015) 15-37.

DOI: 10.1039/c4nr03008g

Google Scholar

[6] Q. Cai, J. Shen, Y. Feng, Q. Shen, H. Yang, Template-free preparation and characterization of nanoporous g-C3N4 with enhanced visible photocatalytic activity, J. Alloys Compd. 628 (2015) 372-378.

DOI: 10.1016/j.jallcom.2014.12.013

Google Scholar

[7] K. Ding, L. Wen, M. Huang, Y. Zhang, Y. Lu, and Z. Chen, How does the B,F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C3N4? Phys. Chem. Chem. Phys. 18 (2016) 19217-19226.

DOI: 10.1039/c6cp02169g

Google Scholar

[8] S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance, ACS Appl. Mater. Interfaces 5 (2013) 12735-12743.

DOI: 10.1021/am404123z

Google Scholar

[9] Kresse, G.; Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, J. Comput. Mater. Sci. 6 (1996) 15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[10] Kresse, G.; Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, J. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 35 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[11] Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colic-Salvetti correlation-Energy formula into a functional of the electron density, Phys. ReV. B 37 (1988) 785-789.

DOI: 10.1103/physrevb.37.785

Google Scholar

[12] P. E. Blöchl, Projector augmented-wave method, Physical Review B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[13] Perdew, J. P.; Burke, K.; Ernzerhof, Generalized Gradient Approximation Made Simple, M.Phys.Rev.Lett.77(1996)3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] Perdew, J. P.; Ernzerhof, M.; Burke, K., Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. 105 (1996) 9982-9985.

DOI: 10.1063/1.472933

Google Scholar

[15] A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102 (2009) 073005.

DOI: 10.1103/physrevlett.102.073005

Google Scholar

[16] J. Cui, S. Liang, X. Wang, J. Zhang, First principle modeling of oxygen-doped monolayer graphitic carbon nitride, Mater. Chem. Phys. 161 (2015) 194-200.

DOI: 10.1016/j.matchemphys.2015.05.036

Google Scholar

[17] B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst, Appl. Catal. B: Environ. 207 (2017) 27-34.

DOI: 10.1016/j.apcatb.2017.02.020

Google Scholar

[18] M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline condensed, graphitic carbon nitride, Chem. Eur. J. 14 (2008) 8177-8182.

DOI: 10.1002/chem.200800190

Google Scholar

[19] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater.8(2009)76–80.

DOI: 10.1038/nmat2317

Google Scholar

[20] J. Liu, Effect of phosphorus doping on electronic structure and photocatalytic performance of g-C3N4: Insights from hybrid density functional calculation, J. Alloys Compd. 672 (2016) 271- 276.

DOI: 10.1016/j.jallcom.2016.02.094

Google Scholar

[21] H. Li, L. Zhou, L. Wang, Y. Liu, J. Lei, J. Zhang, In situ growth of TiO2 nanocrystals on g-C3N4 for enhanced photocatalytic performance, Phys. Chem. Chem. Phys. 17 (2015) 17406- 17412.

DOI: 10.1039/c5cp02554k

Google Scholar

[22] Gao G., Jiao Y., Waclawik E. R., and Du A., Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide, J. Am. Chem. Soc. 138 (2016) 6292-6297.

DOI: 10.1021/jacs.6b02692

Google Scholar

[23] Z. Sun, J.M.T.A. Fischer, Q. Li, J. Hu, Q. Tang, H. Wang, Z. Wu, M. Hankel, D.J. Searles, L. Wang, Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride, Appl. Catal. B: Environ. 216 (2017) 146-155.

DOI: 10.1016/j.apcatb.2017.05.064

Google Scholar

[24] J. Wang, Z. Guan, J. Huang, Q. Li, J. Yang, Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite, J. Mater. Chem. A 2 (2014) 7960-7966.

Google Scholar

[25] D. Misra and T. K. Kundu, Oxygen vacancy induced metal-insulator transition in LaNiO3, Eur. Phys. J. B. 89: 4 (2016) 1-8.

DOI: 10.1140/epjb/e2015-60714-0

Google Scholar

[26] J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, J. Yu, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells, J. Power Sources,274 (2015) 77-84.

DOI: 10.1016/j.jpowsour.2014.10.033

Google Scholar

[27] Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, H. Ding, Enhanced photochemical oxidation ability of carbon nitride by π-π stacking interactions with graphene, Chin. J. Catal. 38 (2017) 278-286.

DOI: 10.1016/s1872-2067(16)62561-5

Google Scholar

[28] Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92 (1990) 5397-5403.

DOI: 10.1063/1.458517

Google Scholar

[29] Burdett, J.K.; McCormick, T.A. Electron localization in molecules and solids: The meaning of ELF. J. Phys. Chem. A 102 (1998) 6366-6372.

DOI: 10.1021/jp9820774

Google Scholar

[30] D. Misra and T. K. Kundu, Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3, J. Electronic Materials, Vol. 46, No. 1, (2017) 150-157.

DOI: 10.1007/s11664-016-4889-3

Google Scholar