Binary Mixture of Solid-Solid Phase Change Material: Synthesis, Characterization and Experimental Study

Article Preview

Abstract:

In this work, a class of polyol solid-solid phase change material where Neopentyl glycol is mixed in 6 and 2 wt.% of Pentaerythritol and was synthesized by physical blending method to obtain homogeneous mixture and thermally cycled for 500 times. The surface morphology, chemical composition, crystal phase identification, thermal degradation, and phase change phenomena were characterized. The phase transition temperatures and enthalpies upon heating and cooling of 6 and 2 wt.% of Pentaerythritol are found to be 43.1 °C, 133 J g-1, and 28.2 °C, 119 J g-1, and 41.2 °C, 121 J g-1, and 28.5 °C, 106 J g-1, respectively which suits for electronic system to keep under operating zone. Laser Flash Apparatus was used to find the thermal diffusivity and thermal conductivity value was calculated. Further, the effect of heat transfer in binary polyol mixtures were experimentally analysed through conventional heat sink for electronic cooling application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-420

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ould Amrouche S., Rekioua D., Rekioua T., Bacha S.: Overview of energy storage in renewable energy systems. Int J Hydrogen Energy 2016;41:20914–27.

DOI: 10.1016/j.ijhydene.2016.06.243

Google Scholar

[2] H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv: Thermal energy storage: Recent developments and practical aspects, Prog. Energy Combust. Sci. 53 (2016) 1–40.

DOI: 10.1016/j.pecs.2015.10.003

Google Scholar

[3] Pielichowska K, Pielichowski K.: Phase change materials for thermal energy storage. Prog Mater Sci 2014.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[4] V. Pethurajan, S. Sivan, Fabrication, Characterisation and Heat Transfer study on Microencapsulation of nano- enhanced phase change material, Chem. Eng. Process. Process Intensif. 133 (2018) 12–23.

DOI: 10.1016/j.cep.2018.09.014

Google Scholar

[5] Praveen B, Suresh S. Thermal performance of micro-encapsulated PCM with LMA thermal percolation in TES based heat sink application. Energy Convers Manag 2019;185:75–86.

DOI: 10.1016/j.enconman.2019.01.080

Google Scholar

[6] Praveen B, Suresh S. Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng Sci Technol an Int J 2018;21:1086–94.

DOI: 10.1016/j.jestch.2018.07.010

Google Scholar

[7] W. Su, J. Darkwa, G. Kokogiannakis: Review of solid – liquid phase change materials and their encapsulation technologies, 48 (2015) 373–391.

DOI: 10.1016/j.rser.2015.04.044

Google Scholar

[8] Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y.: Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv Eng Mater 2018;20:1–30.

DOI: 10.1002/adem.201700753

Google Scholar

[9] A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel: Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties, 127 (2017) 1427–1441.

DOI: 10.1016/j.applthermaleng.2017.08.161

Google Scholar

[10] Q. Yan, C. Liang: The thermal storage performance of monobasic, binary and triatomic polyalcohols systems, Sol. Energy. 82 (2008) 656–662.

DOI: 10.1016/j.solener.2007.12.008

Google Scholar

[11] T. Bo, T. Zhi-Cheng, L. Rui-Bin, M. Chang-Gong, Z. Jing-Nan: Thermodynamic investigation of a solid-solid phase change material: 2-Amino-2-methyl-1,3-propanediol by calorimetric methods, Energy Convers. Manag. 51 (2010) 1905–1910.

DOI: 10.1016/j.enconman.2010.02.021

Google Scholar

[12] W. Gao, W. Lin, T. Liu, C. Xia: An experimental study on the heat storage performances of polyalcohols npg, tam, pe, and ampd and their mixtures as solid-solid phase-change materials for solar energy applications, Int. J. Green Energy. 4 (2007) 301–311.

DOI: 10.1080/15435070701332112

Google Scholar

[13] M. Barrio, J. Font, J. Muntasell, J. Navarro, J. L. Tamarit: Applicability for heat storage of binary systems of neopentylglycol, pentaglycerine and pentaerythritol: A comparative analysis, Sol. Energy Mater. 18 (1988) 109–115.

DOI: 10.1016/0165-1633(88)90051-2

Google Scholar

[14] J. Font, J. Muntasell, J. Navarro, J. L. Tamarit: Melanges Pentaglycerine/Neopentylglycol: Formation D'une Solution Solide, Elsevier Sci. Publ. B.V. 136 (1988) 55–71.

DOI: 10.1016/0040-6031(88)87427-6

Google Scholar

[15] X. Wang, E. Lu, W. Lin, T. Liu, Z. Shi, R. Tang, C. Wang: Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials, Energy Convers. Manag. (2000).

DOI: 10.1016/S0196-8904(99)00097-7

Google Scholar

[16] H. Feng, X. Liu, S. He, K. Wu, J. Zhang: Studies on solid-solid phase transitions of polyols by infrared spectroscopy. Feng, H., Liu, X., He, S., Wu, K., & Zhang, J. (2000), Thermochimica Acta, 348(1-2), 175–179.

DOI: 10.1016/s0040-6031(99)00403-7

Google Scholar

[17] J. Font, J. Muntasell, J. Navarro, J.L. Tamarit, J. Lloveras: Calorimetric study of the mixtures PE/NPG and PG/NPG, Sol. Energy Mater. (1987).

DOI: 10.1016/0165-1633(87)90045-1

Google Scholar

[18] R. Akhilesh, A. Narasimhan, C. Balaji: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int. J. Heat Mass Transf. (2005).

DOI: 10.1016/j.ijheatmasstransfer.2005.01.032

Google Scholar

[19] R. Baby, C. Balaji: Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf. 55 (2012) 1642–1649.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.020

Google Scholar

[20] R. Pakrouh, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury: A numerical method for PCM-based pin fin heat sinks optimization, Energy Convers. Manag. 103 (2015) 542–552.

DOI: 10.1016/j.enconman.2015.07.003

Google Scholar

[21] T. Lei, J. Alexandersen, B.S. Lazarov, F. Wang, J.H.K. Haertel, S. De Angelis, S. Sanna, O. Sigmund, K. Engelbrecht: Investment casting and experimental testing of heat sinks designed by topology optimization, Int. J. Heat Mass Transf. 127 (2018) 396–412.

DOI: 10.1016/j.ijheatmasstransfer.2018.07.060

Google Scholar

[22] X.Q. Wang, C. Yap, A.S. Mujumdar: A parametric study of phase change material (PCM)-based heat sinks, Int. J. Therm. Sci. 47 (2008) 1055–1068.

DOI: 10.1016/j.ijthermalsci.2007.07.016

Google Scholar

[23] K.P. Venkitaraj, S. Suresh: Experimental study on thermal and chemical stability of pentaerythritol blended with low melting alloy as possible PCM for latent heat storage, Exp. Therm. Fluid Sci. 88 (2017) 73–87.

DOI: 10.1016/j.expthermflusci.2017.05.018

Google Scholar

[24] K.P. Venkitaraj, S. Suresh, A. Venugopal: Experimental study on the thermal performance of nano enhanced pentaerythritol in IC engine exhaust heat recovery application, Appl. Therm. Eng. 137 (2018) 461–474.

DOI: 10.1016/j.applthermaleng.2018.03.062

Google Scholar

[25] R. Baby, C. Balaji: Thermal performance of a PCM heat sink under different heat loads: An experimental study, Int. J. Therm. Sci. 79 (2014) 240–249.

DOI: 10.1016/j.ijthermalsci.2013.12.018

Google Scholar

[26] K.P. Venkitaraj, S. Suresh, B. Praveen, S.C. Nair: Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications, J. Energy Storage. 17 (2018) 1–10.

DOI: 10.1016/j.est.2018.02.005

Google Scholar

[27] Kumar Trivedi M, Tallapragada RM. Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl glycol. Pharm Anal Chem Open Access 2016;01:1–6.

DOI: 10.4172/2471-2698.1000101

Google Scholar