[1]
Ould Amrouche S., Rekioua D., Rekioua T., Bacha S.: Overview of energy storage in renewable energy systems. Int J Hydrogen Energy 2016;41:20914–27.
DOI: 10.1016/j.ijhydene.2016.06.243
Google Scholar
[2]
H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv: Thermal energy storage: Recent developments and practical aspects, Prog. Energy Combust. Sci. 53 (2016) 1–40.
DOI: 10.1016/j.pecs.2015.10.003
Google Scholar
[3]
Pielichowska K, Pielichowski K.: Phase change materials for thermal energy storage. Prog Mater Sci 2014.
DOI: 10.1016/j.pmatsci.2014.03.005
Google Scholar
[4]
V. Pethurajan, S. Sivan, Fabrication, Characterisation and Heat Transfer study on Microencapsulation of nano- enhanced phase change material, Chem. Eng. Process. Process Intensif. 133 (2018) 12–23.
DOI: 10.1016/j.cep.2018.09.014
Google Scholar
[5]
Praveen B, Suresh S. Thermal performance of micro-encapsulated PCM with LMA thermal percolation in TES based heat sink application. Energy Convers Manag 2019;185:75–86.
DOI: 10.1016/j.enconman.2019.01.080
Google Scholar
[6]
Praveen B, Suresh S. Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng Sci Technol an Int J 2018;21:1086–94.
DOI: 10.1016/j.jestch.2018.07.010
Google Scholar
[7]
W. Su, J. Darkwa, G. Kokogiannakis: Review of solid – liquid phase change materials and their encapsulation technologies, 48 (2015) 373–391.
DOI: 10.1016/j.rser.2015.04.044
Google Scholar
[8]
Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y.: Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv Eng Mater 2018;20:1–30.
DOI: 10.1002/adem.201700753
Google Scholar
[9]
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel: Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties, 127 (2017) 1427–1441.
DOI: 10.1016/j.applthermaleng.2017.08.161
Google Scholar
[10]
Q. Yan, C. Liang: The thermal storage performance of monobasic, binary and triatomic polyalcohols systems, Sol. Energy. 82 (2008) 656–662.
DOI: 10.1016/j.solener.2007.12.008
Google Scholar
[11]
T. Bo, T. Zhi-Cheng, L. Rui-Bin, M. Chang-Gong, Z. Jing-Nan: Thermodynamic investigation of a solid-solid phase change material: 2-Amino-2-methyl-1,3-propanediol by calorimetric methods, Energy Convers. Manag. 51 (2010) 1905–1910.
DOI: 10.1016/j.enconman.2010.02.021
Google Scholar
[12]
W. Gao, W. Lin, T. Liu, C. Xia: An experimental study on the heat storage performances of polyalcohols npg, tam, pe, and ampd and their mixtures as solid-solid phase-change materials for solar energy applications, Int. J. Green Energy. 4 (2007) 301–311.
DOI: 10.1080/15435070701332112
Google Scholar
[13]
M. Barrio, J. Font, J. Muntasell, J. Navarro, J. L. Tamarit: Applicability for heat storage of binary systems of neopentylglycol, pentaglycerine and pentaerythritol: A comparative analysis, Sol. Energy Mater. 18 (1988) 109–115.
DOI: 10.1016/0165-1633(88)90051-2
Google Scholar
[14]
J. Font, J. Muntasell, J. Navarro, J. L. Tamarit: Melanges Pentaglycerine/Neopentylglycol: Formation D'une Solution Solide, Elsevier Sci. Publ. B.V. 136 (1988) 55–71.
DOI: 10.1016/0040-6031(88)87427-6
Google Scholar
[15]
X. Wang, E. Lu, W. Lin, T. Liu, Z. Shi, R. Tang, C. Wang: Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials, Energy Convers. Manag. (2000).
DOI: 10.1016/S0196-8904(99)00097-7
Google Scholar
[16]
H. Feng, X. Liu, S. He, K. Wu, J. Zhang: Studies on solid-solid phase transitions of polyols by infrared spectroscopy. Feng, H., Liu, X., He, S., Wu, K., & Zhang, J. (2000), Thermochimica Acta, 348(1-2), 175–179.
DOI: 10.1016/s0040-6031(99)00403-7
Google Scholar
[17]
J. Font, J. Muntasell, J. Navarro, J.L. Tamarit, J. Lloveras: Calorimetric study of the mixtures PE/NPG and PG/NPG, Sol. Energy Mater. (1987).
DOI: 10.1016/0165-1633(87)90045-1
Google Scholar
[18]
R. Akhilesh, A. Narasimhan, C. Balaji: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int. J. Heat Mass Transf. (2005).
DOI: 10.1016/j.ijheatmasstransfer.2005.01.032
Google Scholar
[19]
R. Baby, C. Balaji: Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, Int. J. Heat Mass Transf. 55 (2012) 1642–1649.
DOI: 10.1016/j.ijheatmasstransfer.2011.11.020
Google Scholar
[20]
R. Pakrouh, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury: A numerical method for PCM-based pin fin heat sinks optimization, Energy Convers. Manag. 103 (2015) 542–552.
DOI: 10.1016/j.enconman.2015.07.003
Google Scholar
[21]
T. Lei, J. Alexandersen, B.S. Lazarov, F. Wang, J.H.K. Haertel, S. De Angelis, S. Sanna, O. Sigmund, K. Engelbrecht: Investment casting and experimental testing of heat sinks designed by topology optimization, Int. J. Heat Mass Transf. 127 (2018) 396–412.
DOI: 10.1016/j.ijheatmasstransfer.2018.07.060
Google Scholar
[22]
X.Q. Wang, C. Yap, A.S. Mujumdar: A parametric study of phase change material (PCM)-based heat sinks, Int. J. Therm. Sci. 47 (2008) 1055–1068.
DOI: 10.1016/j.ijthermalsci.2007.07.016
Google Scholar
[23]
K.P. Venkitaraj, S. Suresh: Experimental study on thermal and chemical stability of pentaerythritol blended with low melting alloy as possible PCM for latent heat storage, Exp. Therm. Fluid Sci. 88 (2017) 73–87.
DOI: 10.1016/j.expthermflusci.2017.05.018
Google Scholar
[24]
K.P. Venkitaraj, S. Suresh, A. Venugopal: Experimental study on the thermal performance of nano enhanced pentaerythritol in IC engine exhaust heat recovery application, Appl. Therm. Eng. 137 (2018) 461–474.
DOI: 10.1016/j.applthermaleng.2018.03.062
Google Scholar
[25]
R. Baby, C. Balaji: Thermal performance of a PCM heat sink under different heat loads: An experimental study, Int. J. Therm. Sci. 79 (2014) 240–249.
DOI: 10.1016/j.ijthermalsci.2013.12.018
Google Scholar
[26]
K.P. Venkitaraj, S. Suresh, B. Praveen, S.C. Nair: Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications, J. Energy Storage. 17 (2018) 1–10.
DOI: 10.1016/j.est.2018.02.005
Google Scholar
[27]
Kumar Trivedi M, Tallapragada RM. Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl glycol. Pharm Anal Chem Open Access 2016;01:1–6.
DOI: 10.4172/2471-2698.1000101
Google Scholar