[1]
W. K. Jun, R.H. Willens, P. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature 187 (1960) 869-870.
DOI: 10.1038/187869b0
Google Scholar
[2]
P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (2001) 259-267.
DOI: 10.1038/35065704
Google Scholar
[3]
L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512 (2014) 177-180.
DOI: 10.1038/nature13617
Google Scholar
[4]
G. Kumar, P. Neibecker, Y.H. Liu, J. Schroers, Critical fictive temperature for plasticity in metallic glasses, Nat. Commun 4 (2013) 1-7.
DOI: 10.1038/ncomms2546
Google Scholar
[5]
H.N. Ritland, Density Phenomena in the Transformation Range of a Borosilicate Crown Glass, J. Am. Ceram. Soc 37 (1954) 370-377.
DOI: 10.1111/j.1151-2916.1954.tb14053.x
Google Scholar
[6]
C.Y. Yang, D.E. Sayers, M.A. Paesler, X-ray-absorption spectroscopy studies of glassy As2S3, The role of rapid quenching, Phys. Rev. B 36 (1987) 8122-8128.
Google Scholar
[7]
C.T. Limbach, U. Gonser, Controlled quenching and phase formation, J. Non-Cryst. Solids 106 (1988) 399-402.
DOI: 10.1016/0022-3093(88)90297-9
Google Scholar
[8]
G. P. Johari, A. Hallbrucker, E. Mayer, Thermal Behavior of Several Hyperquenched Organic Glasses, J. Phys. Chem. 93 (1989) 2648-2652.
DOI: 10.1021/j100343a079
Google Scholar
[9]
K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Phys. Rev. B 54 (1996) 15808-15827.
DOI: 10.1103/physrevb.54.15808
Google Scholar
[10]
C.S. Liu, Z.G. Zhu, J. Xia, D.Y. Sun, Cooling rate dependence of structural properties of aluminium during rapid solidification, J. Phys.: Condens. Matter 13 (2001) 1873-1890.
DOI: 10.1088/0953-8984/13/9/311
Google Scholar
[11]
B.M. Lee, H.K Baik, B. S. Seong, S.Munetoh,T. Motooka, Generation of glass SiO2 structures by various cooling rates: A molecular-dynamics study, Comput. Mater. Sci. 37 (2006) 203-208.
DOI: 10.1016/j.commatsci.2006.01.003
Google Scholar
[12]
S. Streit-Nierobisch, C. Gutt, M. Paulus, M. Tolan, Cooling rate dependence of the glass transition at free surfaces, Phys. Rev. B 77 (2008) 041410-041414.
DOI: 10.1103/physrevb.77.041410
Google Scholar
[13]
A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nat. Mater. 2(2003) 661-663.
DOI: 10.1038/nmat982
Google Scholar
[14]
Y. Zhang, A. L. Greer, Thickness of shear bands in metallic glasses, Appl. Phys. Lett. 89 (2006) 071907-071910.
DOI: 10.1063/1.2336598
Google Scholar
[15]
X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J. J. Lewandowski, Fracture of Brittle Metallic Glasses: Brittleness or Plasticity, PRL 94 (2005) 125510-125514.
DOI: 10.1103/physrevlett.94.125510
Google Scholar
[16]
J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater. 22 (2010) 1566-1597.
DOI: 10.1002/adma.200902776
Google Scholar
[17]
G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals, Nature 457 (2009) 868-872.
DOI: 10.1038/nature07718
Google Scholar
[18]
J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Bulk metallic glasses for biomedical applications, JOM 61 (2009) 21-29.
DOI: 10.1007/s11837-009-0128-1
Google Scholar
[19]
F.H. Stillinger, P.G. Debenedetti, T. M. Truskett, The Kauzmann Paradox Revisited, J. Phys. Chem. B 105 (2001) 11809-11816.
DOI: 10.1021/jp011840i
Google Scholar
[20]
H.S. Chen, The influence of structural relaxation on the density and Young's modulus of metallic glasses, J. Appl. Phys. 49 (1978) 3289-3291.
Google Scholar
[21]
T.C. Hufnagel, C.A. Schuh, M.L. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments, Acta Mater. 109 (2016) 375-393.
DOI: 10.1016/j.actamat.2016.01.049
Google Scholar
[22]
Y.Q. Cheng, E. Ma, Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids, Appl. Phys. Lett. 93 (2008) 111913-111916.
DOI: 10.1063/1.2987727
Google Scholar
[23]
S.G. Mayr, Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses, Phys. Rev. B 71(2005) 144109-144112.
DOI: 10.1103/physrevb.71.144109
Google Scholar
[24]
D.B. Miracle, A structural model for metallic glasses, Nat. Mater. 3 (2004) 697-702.
Google Scholar
[25]
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature 439 (2006) 419-425.
DOI: 10.1038/nature04421
Google Scholar
[26]
P. Cao, H.S. Park, X. Lin, Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids, Phys. Rev. E 88 (2013) 042404-042414.
DOI: 10.1103/physreve.88.042404
Google Scholar
[27]
S.J. Poon, G.J. Shiflet, F.Q. Guo, V.Ponnambalam, Glass formability of ferrous- and aluminum-based structural metallic alloys, J. Non-Cryst. Solids 317 (2003) 1-9.
DOI: 10.1016/s0022-3093(02)02000-8
Google Scholar
[28]
L. Xia, S.T. Shan, D. Ding, Y.D. Dong, Binary bulk metallic glass Ni62Nb38 with high compressive strength of 3100 MPa, Intermet. 15 (2007) 1046-1049.
DOI: 10.1016/j.intermet.2006.12.008
Google Scholar
[29]
A. Gebert, J. Eckert, L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass, Acta Mater. 46 (1998) 5475-5482.
DOI: 10.1016/s1359-6454(98)00187-6
Google Scholar
[30]
Y. Zhao, P.F. Liu, L. Wu, B. Zhang, K. Sato, The role of open spaces to glass-forming ability in bulk metallic glasses, Intermet. 100 (2018) 112-115.
DOI: 10.1016/j.intermet.2018.06.011
Google Scholar
[31]
Z. Zhu, H. Zhang, D. Pan, W. Sun , Z. Hu, Fabrication of Binary Ni‐Nb Bulk Metallic Glass with High Strength and Compressive Plasticity Adv. Eng. Mater. 8 (2006) 953-957.
DOI: 10.1002/adem.200600105
Google Scholar
[32]
F. Thalmann, Note on the role of the dimensionality in the structural glass transition, J. Chem. Phys 116 (2002) 3378-3383.
Google Scholar
[33]
B. Schmid, R. Schilling, Glass transition of hard spheres in high dimensions, Phys. Rev. E 81 (2010) 041502-041512.
Google Scholar
[34]
S. Plimpton, Computational limits of classical molecular dynamics simulations, Comput. Mater. Sci 4 (1995) 361-364.
Google Scholar
[35]
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R Rep 44 (2004) 45-89.
Google Scholar
[36]
K.V. Reddy, S. Pal, Contribution of Nb towards enhancement of glass forming ability and plasticity of Ni-Nb binary metallic glass, J. Non-Cryst. Solids 471 (2017) 243-250.
DOI: 10.1016/j.jnoncrysol.2017.06.007
Google Scholar
[37]
S.Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys 117 (1995) 1-19.
Google Scholar
[38]
Y. Zhang, R. Ashcraft, M.I. Mendelev, C. Z. Wang, K.F. Kelton, Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy, J. Chem. Phys. 145 (2016) 204505-204515.
DOI: 10.1063/1.4968212
Google Scholar
[39]
N. Asproulis, D. Drikakis, HPC Parallelisation of Boundary Conditions in Multiscale Methods.
Google Scholar
[40]
J. Algorithm Comput. Technol. 8 (2014) 357-368.
Google Scholar
[41]
J.P. Ryckaert, G. Ciccotti, H. J.C Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys 23 (1977) 327-341.
DOI: 10.1016/0021-9991(77)90098-5
Google Scholar
[42]
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys 81 (1984) 511-519.
DOI: 10.1063/1.447334
Google Scholar
[43]
W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 31 (1985) 1695-1697.
DOI: 10.1103/physreva.31.1695
Google Scholar
[44]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 (2009) 015012-015019.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[45]
N.A. Mauro, M.L. Johnson, J.C. Bendert, K.F. Kelton, Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses — A measure of liquid fragility? J. Non-Cryst. Solids 362 (2013) 237-245.
DOI: 10.1016/j.jnoncrysol.2012.11.022
Google Scholar
[46]
D. Turnbull, Free‐Volume Model of the Amorphous Phase: Glass Transition, J. Chem. Phys 34 (1961) 120-125.
Google Scholar
[47]
A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara,Å. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction, Acta Mater 56 (2005) 1611-1619.
DOI: 10.1016/j.actamat.2004.12.011
Google Scholar
[48]
S. Mishra, S. Pal, Variation of glass transition temperature of Al90Sm10metallic glass under pressurized cooling, J. Non-Cryst. Solids 500 (2018) 249-259.
DOI: 10.1016/j.jnoncrysol.2018.08.006
Google Scholar
[49]
M. Meraj, C. Deng, S. Pal, Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations, J. Appl. Phys 123 (2018) 044306-044322.
DOI: 10.1063/1.5012960
Google Scholar
[50]
Y. Zhang, N. Mattern, J. Eckert, Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: Molecular dynamics simulations, J. Appl. Phys 110 (2011) 093506-093514.
DOI: 10.1063/1.3658252
Google Scholar
[51]
T.Q. Wen,Y. Zhang,, C.Z. Wang, N. Wang, K.M. Ho, M.J. Kramer, Local structure orders and glass forming ability of Ni-Nb liquids, Intermet. 98 (2011) 131-138.
DOI: 10.1016/j.intermet.2018.04.021
Google Scholar
[52]
Y-C Hu, P-F Guan, Q. Wang,Y. Yang, H-Y Bai, W-H Wang Pressure effects on structure and dynamics of metallic glass-forming liquid, J. Chem. Phys 146 (2017) 024507-024520.
DOI: 10.1063/1.4973919
Google Scholar
[53]
A. Foroughi, H. Ashuri, R. Tavakoli, M. Stoica, D. Şopu, J. Eckert, Structural modification through pressurized sub-Tg annealing of metallic glasses, J. Appl. Phys 122 (2017) 215106-215114.
DOI: 10.1063/1.5004058
Google Scholar
[54]
S. Lesz, G. Dercz , Study on crystallization phenomenon and thermal stability of binary Ni–Nb amorphous alloy, J. Therm. Anal. Calorim 126 (2016) 19-26.
DOI: 10.1007/s10973-016-5786-y
Google Scholar