Evaluation of Ni62Nb38 Bimetallic Glass Formation under Hydrostatically Pressurised Quenching

Article Preview

Abstract:

In this present study, molecular dynamics (MD) simulation has been performed to investigate the influence of applied hydrostatic compressive and tensile pressure on glass forming process of Ni62Nb38 bimetallic glass using embedded atom method (EAM). During fast cooling (~10 K ps-1), tensile and compressive pressure has been applied having 0.001 GPa,0.01 GPa and 0.1 GPa magnitude. The glass transition temperature (Tg) for each pressurized (Tensile and Compressive nature) cooling case has been calculated and Tg is found to be dependent on both magnitude and nature of the pressure applied during cooling process.Voronoi cluster analysis has also been carried out to identify the structural evaluation during hydrostatically pressurised fast cooling process. In case of both hydrostatic tensile and compressive pressurised cooling processes, Tg increases with the increase of pressure from 0.001 GPa to 0.1 GPa in magnitude.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

436-445

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. K. Jun, R.H. Willens, P. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature 187 (1960) 869-870.

DOI: 10.1038/187869b0

Google Scholar

[2] P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (2001) 259-267.

DOI: 10.1038/35065704

Google Scholar

[3] L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512 (2014) 177-180.

DOI: 10.1038/nature13617

Google Scholar

[4] G. Kumar, P. Neibecker, Y.H. Liu, J. Schroers, Critical fictive temperature for plasticity in metallic glasses, Nat. Commun 4 (2013) 1-7.

DOI: 10.1038/ncomms2546

Google Scholar

[5] H.N. Ritland, Density Phenomena in the Transformation Range of a Borosilicate Crown Glass, J. Am. Ceram. Soc 37 (1954) 370-377.

DOI: 10.1111/j.1151-2916.1954.tb14053.x

Google Scholar

[6] C.Y. Yang, D.E. Sayers, M.A. Paesler, X-ray-absorption spectroscopy studies of glassy As2S3, The role of rapid quenching, Phys. Rev. B 36 (1987) 8122-8128.

Google Scholar

[7] C.T. Limbach, U. Gonser, Controlled quenching and phase formation, J. Non-Cryst. Solids 106 (1988) 399-402.

DOI: 10.1016/0022-3093(88)90297-9

Google Scholar

[8] G. P. Johari, A. Hallbrucker, E. Mayer, Thermal Behavior of Several Hyperquenched Organic Glasses, J. Phys. Chem. 93 (1989) 2648-2652.

DOI: 10.1021/j100343a079

Google Scholar

[9] K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Phys. Rev. B 54 (1996) 15808-15827.

DOI: 10.1103/physrevb.54.15808

Google Scholar

[10] C.S. Liu, Z.G. Zhu, J. Xia, D.Y. Sun, Cooling rate dependence of structural properties of aluminium during rapid solidification, J. Phys.: Condens. Matter 13 (2001) 1873-1890.

DOI: 10.1088/0953-8984/13/9/311

Google Scholar

[11] B.M. Lee, H.K Baik, B. S. Seong, S.Munetoh,T. Motooka, Generation of glass SiO2 structures by various cooling rates: A molecular-dynamics study, Comput. Mater. Sci. 37 (2006) 203-208.

DOI: 10.1016/j.commatsci.2006.01.003

Google Scholar

[12] S. Streit-Nierobisch, C. Gutt, M. Paulus, M. Tolan, Cooling rate dependence of the glass transition at free surfaces, Phys. Rev. B 77 (2008) 041410-041414.

DOI: 10.1103/physrevb.77.041410

Google Scholar

[13] A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nat. Mater. 2(2003) 661-663.

DOI: 10.1038/nmat982

Google Scholar

[14] Y. Zhang, A. L. Greer, Thickness of shear bands in metallic glasses, Appl. Phys. Lett. 89 (2006) 071907-071910.

DOI: 10.1063/1.2336598

Google Scholar

[15] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J. J. Lewandowski, Fracture of Brittle Metallic Glasses: Brittleness or Plasticity, PRL 94 (2005) 125510-125514.

DOI: 10.1103/physrevlett.94.125510

Google Scholar

[16] J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater. 22 (2010) 1566-1597.

DOI: 10.1002/adma.200902776

Google Scholar

[17] G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals, Nature 457 (2009) 868-872.

DOI: 10.1038/nature07718

Google Scholar

[18] J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Bulk metallic glasses for biomedical applications, JOM  61 (2009) 21-29.

DOI: 10.1007/s11837-009-0128-1

Google Scholar

[19] F.H. Stillinger, P.G. Debenedetti, T. M. Truskett, The Kauzmann Paradox Revisited, J. Phys. Chem. B 105 (2001) 11809-11816.

DOI: 10.1021/jp011840i

Google Scholar

[20] H.S. Chen, The influence of structural relaxation on the density and Young's modulus of metallic glasses, J. Appl. Phys. 49 (1978) 3289-3291.

Google Scholar

[21] T.C. Hufnagel, C.A. Schuh, M.L. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments, Acta Mater. 109 (2016) 375-393.

DOI: 10.1016/j.actamat.2016.01.049

Google Scholar

[22] Y.Q. Cheng, E. Ma, Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids, Appl. Phys. Lett.  93 (2008) 111913-111916.

DOI: 10.1063/1.2987727

Google Scholar

[23] S.G. Mayr, Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses, Phys. Rev. B 71(2005) 144109-144112.

DOI: 10.1103/physrevb.71.144109

Google Scholar

[24] D.B. Miracle, A structural model for metallic glasses, Nat. Mater. 3 (2004) 697-702.

Google Scholar

[25] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature 439 (2006) 419-425.

DOI: 10.1038/nature04421

Google Scholar

[26] P. Cao, H.S. Park, X. Lin, Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids, Phys. Rev. E 88 (2013) 042404-042414.

DOI: 10.1103/physreve.88.042404

Google Scholar

[27] S.J. Poon, G.J. Shiflet, F.Q. Guo, V.Ponnambalam, Glass formability of ferrous- and aluminum-based structural metallic alloys, J. Non-Cryst. Solids 317 (2003) 1-9.

DOI: 10.1016/s0022-3093(02)02000-8

Google Scholar

[28] L. Xia, S.T. Shan, D. Ding, Y.D. Dong, Binary bulk metallic glass Ni62Nb38 with high compressive strength of 3100 MPa, Intermet. 15 (2007) 1046-1049.

DOI: 10.1016/j.intermet.2006.12.008

Google Scholar

[29] A. Gebert, J. Eckert, L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass, Acta Mater. 46 (1998) 5475-5482.

DOI: 10.1016/s1359-6454(98)00187-6

Google Scholar

[30] Y. Zhao, P.F. Liu, L. Wu, B. Zhang, K. Sato, The role of open spaces to glass-forming ability in bulk metallic glasses, Intermet. 100 (2018) 112-115.

DOI: 10.1016/j.intermet.2018.06.011

Google Scholar

[31] Z. Zhu, H. Zhang, D. Pan, W. Sun , Z. Hu, Fabrication of Binary Ni‐Nb Bulk Metallic Glass with High Strength and Compressive Plasticity Adv. Eng. Mater. 8 (2006) 953-957.

DOI: 10.1002/adem.200600105

Google Scholar

[32] F. Thalmann, Note on the role of the dimensionality in the structural glass transition, J. Chem. Phys 116 (2002) 3378-3383.

Google Scholar

[33] B. Schmid, R. Schilling, Glass transition of hard spheres in high dimensions, Phys. Rev. E 81 (2010) 041502-041512.

Google Scholar

[34] S. Plimpton, Computational limits of classical molecular dynamics simulations, Comput. Mater. Sci 4 (1995) 361-364.

Google Scholar

[35] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R Rep 44 (2004) 45-89.

Google Scholar

[36] K.V. Reddy, S. Pal, Contribution of Nb towards enhancement of glass forming ability and plasticity of Ni-Nb binary metallic glass, J. Non-Cryst. Solids 471 (2017) 243-250.

DOI: 10.1016/j.jnoncrysol.2017.06.007

Google Scholar

[37] S.Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys 117 (1995) 1-19.

Google Scholar

[38] Y. Zhang, R. Ashcraft, M.I. Mendelev, C. Z. Wang, K.F. Kelton, Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy, J. Chem. Phys. 145 (2016) 204505-204515.

DOI: 10.1063/1.4968212

Google Scholar

[39] N. Asproulis, D. Drikakis, HPC Parallelisation of Boundary Conditions in Multiscale Methods.

Google Scholar

[40] J. Algorithm Comput. Technol. 8 (2014) 357-368.

Google Scholar

[41] J.P. Ryckaert, G. Ciccotti, H. J.C Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys 23 (1977) 327-341.

DOI: 10.1016/0021-9991(77)90098-5

Google Scholar

[42] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys 81 (1984) 511-519.

DOI: 10.1063/1.447334

Google Scholar

[43] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 31 (1985) 1695-1697.

DOI: 10.1103/physreva.31.1695

Google Scholar

[44] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 (2009) 015012-015019.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[45] N.A. Mauro, M.L. Johnson, J.C. Bendert, K.F. Kelton, Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses — A measure of liquid fragility? J. Non-Cryst. Solids 362 (2013) 237-245.

DOI: 10.1016/j.jnoncrysol.2012.11.022

Google Scholar

[46] D. Turnbull, Free‐Volume Model of the Amorphous Phase: Glass Transition, J. Chem. Phys 34 (1961) 120-125.

Google Scholar

[47] A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara,Å. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction, Acta Mater 56 (2005) 1611-1619.

DOI: 10.1016/j.actamat.2004.12.011

Google Scholar

[48] S. Mishra, S. Pal, Variation of glass transition temperature of Al90Sm10metallic glass under pressurized cooling, J. Non-Cryst. Solids 500 (2018) 249-259.

DOI: 10.1016/j.jnoncrysol.2018.08.006

Google Scholar

[49] M. Meraj, C. Deng,  S. Pal, Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations, J. Appl. Phys 123 (2018) 044306-044322.

DOI: 10.1063/1.5012960

Google Scholar

[50] Y. Zhang, N. Mattern,  J. Eckert, Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: Molecular dynamics simulations, J. Appl. Phys 110 (2011) 093506-093514.

DOI: 10.1063/1.3658252

Google Scholar

[51] T.Q. Wen,Y. Zhang,, C.Z. Wang, N. Wang, K.M. Ho, M.J. Kramer, Local structure orders and glass forming ability of Ni-Nb liquids, Intermet. 98 (2011) 131-138.

DOI: 10.1016/j.intermet.2018.04.021

Google Scholar

[52] Y-C Hu, P-F Guan, Q. Wang,Y. Yang, H-Y Bai, W-H Wang Pressure effects on structure and dynamics of metallic glass-forming liquid, J. Chem. Phys 146 (2017) 024507-024520.

DOI: 10.1063/1.4973919

Google Scholar

[53] A. Foroughi, H. Ashuri, R. Tavakoli, M. Stoica, D. Şopu, J. Eckert, Structural modification through pressurized sub-Tg annealing of metallic glasses, J. Appl. Phys 122 (2017) 215106-215114.

DOI: 10.1063/1.5004058

Google Scholar

[54] S. Lesz, G. Dercz , Study on crystallization phenomenon and thermal stability of binary Ni–Nb amorphous alloy, J. Therm. Anal. Calorim 126 (2016) 19-26.

DOI: 10.1007/s10973-016-5786-y

Google Scholar