Thermo-Physical Parameters Determination of Nano-Crystalline Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy for Twisted Magnetic Cores Heat Treatment Optimization

Article Preview

Abstract:

Thermophysical parameters of Finemet-type initially amorphous alloy produced using rapid quenching technique were determined. The temperature intervals of phase and structure changes have been obtained using calorimetry and non-ambient X-ray diffraction methods. The electric resistance data were recalculated to alloy electrical conductivity which it was recalculated to heat conductivity using the Wiedemann–Franz law. Resulting parameters were used for heat processes simulation that occurs in amorphous material of built-up transformer core during annealing in nanocrystallization temperature interval. Heat treatment of different sizes twisted magnetic cores was optimized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-164

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Duwes, R.H. Willens, W. Klemen, Non-Crystalline structure in solidified gold-silicon alloys, Nature. 187 (1960) 869–870.

DOI: 10.1038/187869b0

Google Scholar

[2] Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys, Acta Materialia. 59 (2011) 2243–2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[3] C. Suryanarayana, A. Inoue. Bulk metallic glasses, CRC Press LLC, Boca Raton, (2011).

Google Scholar

[4] D.B. Miracle, D.V Louzguine-Luzgin, L.V. Louzguina-Luzgina, A. Inoue, An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability, International Materials Reviews. 55 (2010) 219–256.

DOI: 10.1179/095066010x12646898728200

Google Scholar

[5] Y.Q. Cheng, E. Ma Atomic-level structure and structure–property relationship in metallic glasses, Progress in Materials Science. 56 (2011) 379–473.

DOI: 10.1016/j.pmatsci.2010.12.002

Google Scholar

[6] E.V. Levchenko, A.V. Evteev, A.R. Yavari, D.V. Louzguine-Luzgin, I.V. Belova, G.E. Murch A structural model for surface-enhanced stabilization in some metallic glass formers, Philosophical Magazine Letters. 93 (2013) 50–57.

DOI: 10.1080/09500839.2012.729960

Google Scholar

[7] D. Miracle, T. Egami, K.M. Flores, K.F. Kelton, Structural Aspects of Metallic Glasses, Mrs bulletin. 32 (2007) 629–634.

DOI: 10.1557/mrs2007.124

Google Scholar

[8] N.N. Nikul'chenkov, A.S. Yurovskikh, Yu.N. Starodubtsev, M.L. Lobanov, Phase and structural transformations in a nanocrystalline alloy Fe72.5Cu1Nb2Mo1.5Si14B9, Letters on Materials. 9 (2019) 64–69.

DOI: 10.22226/2410-3535-2019-1-64-69

Google Scholar

[9] B. Zang, R. Parsons, K. Onodera, H. Kishimoto , A. Kato, A.C.Y. Liu, K. Suzuki, Effect of heating rate during primary crystallization on soft magnetic properties of melt-spun Fe-B alloys, Scripta Materialia. 132 (2017) 68–72.

DOI: 10.1016/j.scriptamat.2017.01.030

Google Scholar

[10] L.J. Huang, H. Wang, J.W. Liu, C. Zhang, L.Z. Ouyang, M. Zhu, Low temperature de/hydrogenation in the partially crystallized Mg60Ce10Ni20Cu10 metallic glasses induced by milling with process control agents, Journal of Alloys and Compounds. 792 (2019) 835–843.

DOI: 10.1016/j.jallcom.2019.04.029

Google Scholar

[11] L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoha, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang, Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution, Journal of Materials Science & Technology. 35 (2019) 1378–1387.

DOI: 10.1016/j.jmst.2019.03.014

Google Scholar

[12] X.B. Zhai, L. Zhu, H. Zheng, Y.D. Dai, J.K. Chen, Y.G. Wang, F.M. Pan Optimization of crystallization, microstructure and soft magnetic properties of Fe-B-Cu alloys by rapid cyclic annealing, Journal of Alloys and Compounds. 768 (2018) 591–597.

DOI: 10.1016/j.jallcom.2018.07.272

Google Scholar

[13] V.S. Tsepelev, Yu.N. Starodubtsev, V.A. Zelenin, V.A. Kataev, V.Ya, Belozerov, V.V. Konashkov, Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy, Phys. Met. Metallogr. 118 (2017) 553–557.

DOI: 10.1134/s0031918x17060096

Google Scholar

[14] K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel, Applied Physics Letters. 110 (2017) 012407.

DOI: 10.1063/1.4973772

Google Scholar

[15] C. Suryanarayana, A. Inoue C., Iron-based bulk metallic glasses, International Materials Reviews. 58(2013) 131–166.

DOI: 10.1179/1743280412y.0000000007

Google Scholar

[16] V. Schnabel, M. Köhler, D. Music, J. Bednarcik, W.J. Clegg, D. Raabe, J.M. Schneider, Ultra-stiff metallic glasses through bond energy density design, Journal of Physics Condensed Matter. 29 (2017) 1–28.

DOI: 10.1088/1361-648x/aa72cb

Google Scholar

[17] B. Huang, Y. Yang, A.D. Wang, Q. Wang, C.T. Liu, Saturated magnetization and glass forming ability of soft magnetic Fe-based metallic glasses, Intermetallics. 84 (2017) 74–81.

DOI: 10.1016/j.intermet.2017.01.003

Google Scholar