[1]
L. Fedorova, S. Fedorov, A. Sadovnikov, Y. Ivanova, M.Voronina, Abrasive wear of Hilong Bo TN hardfacings VII International conference on mechanical engineering and applied composite materials. Hong Kong, China, November 23-24, (2017).
DOI: 10.1088/1757-899x/307/1/012038
Google Scholar
[2]
A.S. Vasilev, Controlled Forming of Machine Components Operating Characteristics. Procedia Engineering, 150 (2016) 975–979.
DOI: 10.1016/j.proeng.2016.07.073
Google Scholar
[3]
I.V. Kragel'skiy, V.V. Alisin, eds., Trenie, iznashivanie i smazka. T. 1, 2 [Friction, wear-out and lubrication. Vol. 1, 2]. Mocow, Mashinostroenie, (1978).
Google Scholar
[4]
D.N. Garkunov, Triboengineering. Tribotekhnika. Konstruirovanie, izgotovlenie i ekspluatatsiya mashin [Machines designing, production and manufacturing]. Moscow, MCHA, (2002).
Google Scholar
[5]
A.I. Kondakov, Productivity as Measure of Multiproduct Metal Processing Production Efficiency. Procedia Engineering, 150 (2016) 987-991.
DOI: 10.1016/j.proeng.2016.07.151
Google Scholar
[6]
L.V. Fedorova, S.K. Fedorov, Y.S. Ivanova, M.V. Voronina Increase of Wear Resistance of the Drill Pipe Thread Connection by Electromechanical Surface Hardening International Journal of Applied Engineering Research, © Research India Publications, 12(18) (2017) 7485-7489.
Google Scholar
[7]
A.P. Yakovleva, Improving the Durability of Machine Parts Using a Combined Method. Materials Science Forum, 946 (2019) 37-41.
DOI: 10.4028/www.scientific.net/msf.946.37
Google Scholar
[8]
N.N. Zubkov, I.V. Bezin , M.Y. Oshchepkov, Surface reinforcement of carbon composites with microstructural metal materials Polymer Science - Series D, 9(1) (2016) 91-95.
DOI: 10.1134/s1995421216010238
Google Scholar
[9]
S.K. Fedorov, L.V. Fedorova, Yu.S. Ivanova, S.D. Karpukhin, Increase of Wear Resistance of Steel Parts by the Electromechanical Surface Hardening. Uprochnyayushchie tekhnologii i pokrytiya [Strengthening Technologies and Coatings], Vol. 13, no. 7(151), (2017) 305-308.
Google Scholar
[10]
N.N. Zubkov, Yu.L Bityutskaya, Simulation of the Deformational Cutting and the Geometric Parameters of Pin Structures to Analyze the Thermohydraulic Characteristics of Heat-Removal Plates. Russian Metallurgy (Metally), 13 (2018) 1202-1207.
DOI: 10.1134/s003602951813027x
Google Scholar
[11]
N.N. Zubkov , A.I. Ovchinnikov , S.G. Vasil'ev, Tool–workpiece interaction in deformational cutting. Russian Engineering Research , 36(3) (2016) 209-212.
DOI: 10.3103/s1068798x16030217
Google Scholar
[12]
Yu.G. Shneyder, Ekspluatatsionnye svoystva detaley s regulyarnym mikrorel'yefom [Performance characteristics of parts with regular microrelief]. Moscow, Mashinostroenie, (1982).
Google Scholar
[13]
N.N. Zubkov, V. Poptsov, S. Vasiliev., A. Batako, Steel Case Hardening Using Deformational Cutting. Journal of Manufacturing Science and Engineering, 140(6) (2018) 061013.
DOI: 10.1115/1.4039382
Google Scholar
[14]
N. Zubkov, V. Poptsov., S. Vasiliev, Surface Hardening by Turning without Chip Formation. Jordan Journal of Mechanical and Industrial Engineering, 11(1) (2017) 13-19.
Google Scholar
[15]
O.N. Parshikov, A.P. Yakovleva, Electro-Mechanic Method of Steel Parts Treatment. Glavnyy mekhanik [Chief mechanical engineer], 7 (2014) 62-64.
Google Scholar
[16]
A.P. Yakovleva, Strengthening of coarse pitch gears. Aviatsionnaya promyshlennost' [Aviation Industry], 2 (2014) 31-33.
Google Scholar
[17]
A.G. Suslov Kachestvo poverkhnostnogo sloya detaley mashin [Property of machine parts surface layer]. Moscow, Mashinostroenie, (2000).
Google Scholar
[18]
P.H. Mayrhofer, C. Mitterer, J. Musil, Structure-property relationships in single- and dual-phase nanocrystalline hard coatings. Surface and Coatings Technology, 174-175 (2003) 725-731.
DOI: 10.1016/s0257-8972(03)00576-0
Google Scholar
[19]
A. Leyland, A. Matthews, Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surface and Coatings Technology, 177-178 (2004) 317–324.
DOI: 10.1016/j.surfcoat.2003.09.011
Google Scholar
[20]
N.N. Zubkov , I.V. Bezin, Surface modification by deformational cutting for improving the bonding strength of polymers and polymer composite materials with metals and with each other IOP Conference Series: Materials Science and Engineering, 213(1) (2017) 012010.
DOI: 10.1088/1757-899x/213/1/012010
Google Scholar
[21]
S.K. Fedorov, A.A. Serzhant, V.V. Golovin, S.V. Systerov, Electromechanical Surface Hardening of Tubing Steels. Metal Science and Heat Treatment, 59(3-4) (2017) 173–175.
DOI: 10.1007/s11041-017-0123-z
Google Scholar
[22]
S. Bagherifard, M. Guagliano Fatigue behaviour of a low allow steel with nanostructured surface obtained by severe shot peening // Engineering Fracture Mechanics. 81 (2012) 56 – 68.
DOI: 10.1016/j.engfracmech.2011.06.011
Google Scholar