[1]
Patent 2449859, Russian Federation.
Google Scholar
[2]
E.V. Ageev, B.A. Semenikhin, and R.A. Latypov, Method for producing nanostructured powders based on the WC–CO system and device for its application, Fund. Prikl. Probl. Tekhn. Tekhnolog., 5 (2010) 39-42.
Google Scholar
[3]
R.A. Latypov, E.V. Ageev, and A.A. Davydov, Restoration and hardening of machine elements and tool using the powders produced by electric discharge dispersion of tungsten-containing wastes, Remont. Vosstanovlenie. Modernizatsiya, 12 (2013) 23-28.
Google Scholar
[4]
Ageev E.V., Altukhov A.Yu., Khardikov S.V., Gulidin S.S., Novikov A.N., Еlectroerosive powder obtained from alloy vk8 waste into butanol, Journal of nano-and electronic physics. Vol. 7, No 4, Part 2, (2015) 04058(2).
Google Scholar
[5]
E.V. Ageev, R.A. Latypov, and A.S. Ugrimov, Metallurgical features of the manufacture of hard-alloy powders by electric discharge dispersion of a T15K6 alloy in butanol, Elektrometallurgiya, 4 (2016) 28-31.
DOI: 10.1134/s003602951612003x
Google Scholar
[6]
R.A. Latypov, E.V. Ageeva, O.V. Kruglyakov, and G.R. Latypova, Electric discharge powders of microand nanofractions for the manufacture of hard alloys, Elektrometallurgiya, 1 (2016) 16–20.
Google Scholar
[7]
Karlsson J., Snis A., Engqvist H., Lausmaa J., Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. Journal of Materials Processing Technology, 213(12) (2013) 2109-2118.
DOI: 10.1016/j.jmatprotec.2013.06.010
Google Scholar
[8]
Azarova E.V., Levashov E.A., Ralchenko V.G., Creation of strong adhesive diamond coatings on hard alloy by electric-spark alloying. Metallurgist. 2010. Vol. 54, № 7-8. P. 523-529.
DOI: 10.1007/s11015-010-9333-y
Google Scholar
[9]
Gu D.D., Meiners W., Wissenbach K., Poprawe R., Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57(3) (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[10]
Wang Z., Guana K., Gaoa M., The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds, 513 (2012) 518-523.
DOI: 10.1016/j.jallcom.2011.10.107
Google Scholar
[11]
Ageeva E.V., Khor'yakova N.M., Ageev E.V. Morphology of copper powder produced by electrospark dispersion from waste. Russian Engineering Research. 2014. Т. 34. № 11. С. 694-696.
DOI: 10.3103/s1068798x14110045
Google Scholar
[12]
I.V. Galinov, R.B. Luban, Mass transfer trends during electrospark alloying. Surface & Coatings Technology. 79 (1996) 9-18.
DOI: 10.1016/0257-8972(95)02434-4
Google Scholar
[13]
T. Chang-bin, L. Dao-xin, W. Zhan, G. Yang, Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Applied Surface Science. 257 (2011) 6364-6371.
DOI: 10.1016/j.apsusc.2011.01.120
Google Scholar
[14]
Ageev E.V., Altukhov A.Y., Gulidin S.S.X-ray microanalysis of hardmetal powder, produced by electroerosion dispersion of vk8 alloy in kerosene environment. Materials Science Forum. 2016. Т. 870. С. 422-427.
DOI: 10.4028/www.scientific.net/msf.870.422
Google Scholar
[15]
Z. Chen, Y. Zhou, Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization. Surface & Coatings Technology, 201 (2006) 1503-1510.
DOI: 10.1016/j.surfcoat.2006.02.015
Google Scholar
[16]
A.V. Ribalko, O. Sahin, The use of bipolar current pulses in electro spark alloying of metal surfaces. Surface & Coatings Technology, 168 (2003) 129-135.
DOI: 10.1016/s0257-8972(02)00877-0
Google Scholar
[17]
N. Radek, Determining the operational properties of steel beaters after electrospark deposition. Eksploatacja Niezawodność, Maintenance and Reliability, 4 (2009) 10-16.
Google Scholar
[18]
E.V. Ageevа, E.V. Ageev, N.M. Horyakova, Morphology of copper powder produced by electrospark dispersion from waste. Russ. Eng. Res., 34(11) (2014) 694-696.
DOI: 10.3103/s1068798x14110045
Google Scholar
[19]
E.V. Ageevа, E.V. Ageev, N.M. Horyakova, Morphology and composition of copper electrospark powder suitable for sintering. Russ. Eng. Res., 35(1) (2015) 33-35.
DOI: 10.3103/s1068798x15010037
Google Scholar
[20]
Oskolkova T.N., Budovskikh E.A.. Electric explosion alloying of the surface of hard alloy vk10ks with titanium and silicon carbide. Metal. Sci. Heat Treat. 2013. Vol. 55, № 1-2. P. 96-99.
DOI: 10.1007/s11041-013-9587-7
Google Scholar