[1]
A. Goldman, Modern Ferrite Technology, second ed., Springer, Pittsburg, (2006).
Google Scholar
[2]
R. Sharapov, Determination of granulometric composition parameters of grinding product in a ball mill, MATEC Web of Conf. 251 (2018).
DOI: 10.1051/matecconf/201825103010
Google Scholar
[3]
V.V. Kafarov, I.N. Dorokhov, S.Yu. Arutyunov, System analysis of chemical tachnology processes, Nauka, Moscow, (1985).
Google Scholar
[4]
Z. Yin, T. Li, Y. Peng, Effect of lifter shapes on the mill power in a ball mill, J. Mat. Science and Eng. 452 (2018) 042201.
DOI: 10.1088/1757-899x/452/4/042201
Google Scholar
[5]
Goldman A. Modern Ferrite Technology, 2nd Ed.- Pittsburgh: Springer, (2006).
Google Scholar
[6]
I.N. Egorov, S.I. Egorova, Yu.M. Vernigorov, RF Patent 2306180 (2007).
Google Scholar
[7]
J.M. Valverde, Fluidization of fine powders, Springer, Netherlands, (2013).
Google Scholar
[8]
H. Jiang, H. Chen, J. Gao, Characterization of gas-solid fluidization in fluidized beds with different patricle size distrubution by analyzing pressure fluctuations in wind caps, Chem. Eng. J. 352 (2018) 923-939.
DOI: 10.1016/j.cej.2018.05.165
Google Scholar
[9]
I. Golovin, G. Strenzke, R. Durr, Parameter identification for continuous fluidized bed spray agglomeration, J. Processes. 6 (2018) 246.
DOI: 10.3390/pr6120246
Google Scholar
[10]
P.S. Raux, A.L. Biance, Cohesion and agglomeration of wet powders, J. Physical Review Fluids, 3 (2018).
DOI: 10.1103/physrevfluids.3.014301
Google Scholar
[11]
A.P Lupanov, A.Yu. Vinarov, A.P. Kanavin, Impact energy consumption by particles in magnetic field, J. Tech.Phys., 77 (2007) 134-135.
Google Scholar
[12]
M.K. Bologa, Magneto fluidization in rotating magnetic field, J. Magn. Hydrodyn. 3 (1988) 103-108.
Google Scholar
[13]
Yu. M. Vernigorov, I.N. Egorov, S.I. Egorova, The application of a magnetovibrating layer to the milling of ferromagnetic materials, Euro PM2005 Proceedings, 1 (2005) 451-455.
Google Scholar
[14]
I. Egorov, N. Egorov, Technological processes intensification in devices with magneto-fluidized bed, MATEC Web Conf. 132 (2017) 1-4.
DOI: 10.1051/matecconf/201713203001
Google Scholar
[15]
I.N. Egorov, S.I. Egorova, V.P. Kryzhanovsky, Particle size distribution and structural state analysis of mechanically milled strontium hexaferrite, Mat. Sci. Forum, 946 (2019) 293-297.
DOI: 10.4028/www.scientific.net/msf.946.293
Google Scholar
[16]
V.G. Andreev, I.I. Kaneva, S.V. Podgornaya, Study of influence of milling duration on strontium haxaferrite microstructure and properties of magnets from it, J. Mat. of El. Tech., 2 (2010) 43-47.
Google Scholar
[17]
Information on http://www.ccp14.ac.uk.
Google Scholar
[18]
V. Ya. Bulanov, L.I. Kvarter, T.V. Dolgal, Metallic powders diagnostics, Nauka, Moscow (1983).
Google Scholar
[19]
R.A. Young, The Rietveld Method, Oxford University Press, Oxford, (1993).
Google Scholar
[20]
Williamson, G.K. and Hall, W.H. X-ray line broadening from filed aluminum and wolfram. Acta Metall, 1, (1953) 22-31.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[21]
Yu. D. Yagodkin, S.V. Dobatkin, Application of electron microscopy and X-ray diffraction for definition of structural elements sizes in nanocrystalic materials, J. Mat. Diag. 73 (2007) 38-49.
Google Scholar