The Effects of Alkaline Earth Metals on the Structure of Sodium Borosilicate Glasses: 11B and 29Si NMR Study

Article Preview

Abstract:

The effect of substitution of alkaline earth metals for sodium on the structure of alkali borosilicate glasses had been studied using the solid-state 11B and 29Si NMR spectroscopy. NMR spectra enable to evaluate the relative mole fractions of different silicon and boron structural units in studied samples. The obtained results demonstrate that alkaline earth metals increase the polymerization degree of the silicon structural units at the expense of de-polymerization of the boron units. The reason for these changes is preferential coordination of sodium and alkaline earth metals to the boron units, that increases strongly for the studied alkaline earth metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-198

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[14] I.G. Shenderovich, D. Mauder, D. Akcakayiran, G. Buntkowsky, H.-H. Limbach, G.H. Findenegg, NMR Provides Checklist of Generic Properties for Atomic-Scale Models of Periodic Mesoporous Silicas, J. Phys. Chem. B. 111 (2007) 12088-12096.

DOI: 10.1021/jp073682m

Google Scholar

[15] F. Angeli, T. Charpentier, D. de Ligny, C. Cailleteau, Boron Speciation in Soda-Lime Borosilicate Glasses Containing Zirconium, J. Am. Ceram. Soc. 93 [9] (2010) 2693–2704.

DOI: 10.1111/j.1551-2916.2010.03771.x

Google Scholar

[16] F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, L. Wondraczek, Effect of temperature and thermal history on borosilicate glass structure, Phys. Review B. 85 (5) (2012) 054110.

DOI: 10.1103/physrevb.85.054110

Google Scholar

[17] G. Tricot, A. Saitoh, H. Takebe, Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR, Phys Chem Chem Phys. 17(44) (2015) 29531-40.

DOI: 10.1039/C5CP02095F

Google Scholar

[18] S. Elbersa, W. Strojeka, L. Koudelkab, H. Eckerta, Site connectivities in silver borophosphate glasses: new results from 11B{31P} and 31P{11B} rotational echo double resonance NMR spectroscopy, Solid State Nuclear Magnetic Resonance. 27 (2005) 65–76.

DOI: 10.1016/j.ssnmr.2004.08.007

Google Scholar

[19] L. Koudelka, P. Kalenda, P. Mošner, L. Montagne, B. Revel, Structure–property relationships in barium borophosphate glasses modified with niobium oxide, J. Non-Cryst. Solids. 437 (2016) 64–71.

DOI: 10.1016/j.jnoncrysol.2016.01.017

Google Scholar

[20] E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Le Gac, M. Fournier, A. Mesbah, F. Vasconcelos, Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass, J. Non-Cryst. Solids. 427 (2015) 120–133.

DOI: 10.1016/j.jnoncrysol.2015.07.001

Google Scholar

[21] S. Peuget, T. Fares, E.A. Maugeri, R. Caraballo, T. Charpentier, L. Martel, J. Somers, A. Janssen, T. Wiss, F. Rozenblum, M. Magnin, X. Deschanels, C. Jégou, Effect of 10B(n, a)7Li irradiation on the structure of a sodium borosilicate glass, Nuclear Instruments and Methods in Physics Research B. 327 (2014) 22–28.

DOI: 10.1016/j.nimb.2013.09.042

Google Scholar

[22] B.C.K. Ip, D. V. Andreeva, G. Buntkowsky, D. Akcakayiran, G. H. Findenegg, I. G. Shenderovich, NMR Study of Proton Transfer to Strong Bases on Inner Surfaces of MCM-41, Micropor. Mesopor. Mater. 134 (2010) 22-28.

DOI: 10.1016/j.micromeso.2010.05.003

Google Scholar

[23] J. H. Baltisberger, P. Florian, E. G. Keeler, P. A. Phyo, K. J. Sanders, P. J. Grandinetti, Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses, J. Mag. Res. 268 (2016) 95–106.

DOI: 10.1016/j.jmr.2016.05.003

Google Scholar

[24] J. Schneider, V. R. Mastelaro, E. D. Zanotto, B. A. Shakhmatkin, N. M. Vedishcheva, Adrian C. Wright, H. Panepucci, Qn distribution in stoichiometric silicate glasses: thermodynamic calculations and 29Si high resolution NMR measurements, J. Non-Cryst. Solids. 325 (2003) 164–178.

DOI: 10.1016/s0022-3093(03)00332-6

Google Scholar

[25] T. Nanba, M. Nishimura, Y. Miura, A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses, Geochim. Cosmochim. Acta. 68(24) (2004) 5103-5111.

DOI: 10.1016/j.gca.2004.05.042

Google Scholar

[26] F. Angeli, T. Charpentier, E. Molières, A. Soleilhavoup, P. Jollivet, S. Gin, Influence of lanthanum on borosilicate glass structure: A multinuclear MAS and MQMAS NMR investigation, J. Non-Cryst. Solids. 376 (2013) 189-198.

DOI: 10.1016/j.jnoncrysol.2013.05.042

Google Scholar

[27] O. L. G. Alderman, M. Liška, J. Macháček, C. J. Benmore, A. Lin, A. Tamalonis, J. K. R. Weber, Temperature-Driven Structural Transitions in Molten Sodium Borates Na2O−B2O3: X‑ray Diffraction, Thermodynamic Modeling, and Implications for Topological Constraint Theory, J. Phys. Chem. C. 120 (2016) 553−560.

DOI: 10.1021/acs.jpcc.5b10277

Google Scholar

[28] D. Mauder, D. Akcakayiran, S. B. Lesnichin, G. H. Findenegg, I. G. Shenderovich, Acidity of Sulfonic and Phosphonic Acid‑Functionalized SBA-15 under Almost Water‑Free Conditions, J. Phys. Chem. C. 113 (2009) 19185-19192.

DOI: 10.1021/jp907058y

Google Scholar

[29] D. Akcakayiran, D. Mauder, C. Hess, T. K. Sievers, D.G. Kurth, I. Shenderovich, H.-H. Limbach, G.H. Findenegg, Carboxylic Acid-Doped SBA-15 Silica as a Host for Metallo-supramolecular Coordination Polymers, J. Phys. Chem. B. 112 (2008) 14637–14647.

DOI: 10.1021/jp804712w

Google Scholar

[30] J. Morell, S. Chatterjee, P. J. Klar, D. Mauder, I. G. Shenderovich, F. Hoffmann, M- Fröba, Synthesis and Characterization of Chiral Benzylic Ether-Bridged Periodic Mesoporous Organosilicas, Chem. Eur J. 14 (2008) 5935-5940.

DOI: 10.1002/chem.200800239

Google Scholar