[1]
Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage., Renewable and Sustainable Energy Reviews, 82 (2018) 2730–2742.
DOI: 10.1016/j.rser.2017.10.002
Google Scholar
[2]
Gutierrez, S. Ushak, V. Mamani, P. Vargas, C. Barreneche, L.F. Cabeza, M. Grágeda., Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials., Solar Energy Materials and Solar Cells, 170 (2017) 149–159.
DOI: 10.1016/j.solmat.2017.05.036
Google Scholar
[3]
A.G. Mozgovoi, E.E. Shpilrain, М.А. Dibirov, М.М. Bochkov, L.N. Levina, М.М Kenisarin., Teplophizicheskie svoistva teploakkumuliruyuschih materialov, Kristalogidratt: Obzori po teplofizicheskim svoistvam veshestv., TFC. – М.: IVTAN, 2(82) (1990) 3-105.
Google Scholar
[4]
L.F. Cabeza., Advances in thermal energy storage systems, methods and applications., Elsevier: Woodhead publishing series in energy, 66 (2014).
Google Scholar
[5]
B.S. Nolwenn Le Pierres, F. Kuznik, K. Johannes, E. Palomo Del Barrio, J.P. Bédécarrats, S. Gibout, P. Marty, L. Zalewski, J. Soto, N. Mazet, R. Olives, J.J. Bezian, D. Pham Minh., Storage of thermal solar energy., C. R. Physique, 18 (2017) 401–414.
DOI: 10.1016/j.crhy.2017.09.008
Google Scholar
[6]
D. Zou, X. Ma, X. Liu, P. Zheng, B. Cai, J. Huang, J. Guo, M. Liu., Experimental research of an air-source heat pump water heater using water - PCM for heat storage., Applied Energy, 206 (2017) 784–792.
DOI: 10.1016/j.apenergy.2017.08.209
Google Scholar
[7]
N.H. Abu-Hamdeh, K.A. Alnefaie. Assessment of thermal performance of PCM in latent heat storage system for different applications., Solar Energy, 177 (2019) 317–323.
DOI: 10.1016/j.solener.2018.11.035
Google Scholar
[8]
J. Jaguemont, N. Omar, P. Van den Bossche, J. Mierlo., Phase-change materials (PCM) for automotive applications: A review., Applied Thermal Engineering, 132 (2018) 308–320.
DOI: 10.1016/j.applthermaleng.2017.12.097
Google Scholar
[9]
Sarbu, A comprehensive review of thermal energy storage, Sustainability, 10 (2018) 191.
Google Scholar
[10]
H. Nazir, M. Batool, F. J. Bolivar Osorio, M. Isaza-Ruiz c, X. Xu, K. Vignarooban, P. Phelan, Inamuddin, A. M. Kannan., Recent developments in phase change materials for energy storage applications: A review., International Journal of Heat and Mass Transfer, 129 (2019) 491–523.
DOI: 10.1016/j.ijheatmasstransfer.2018.09.126
Google Scholar
[11]
Y. Lin, G. Alva, G. Fang., Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials., Energy, 165 (2018) 685-708.
DOI: 10.1016/j.energy.2018.09.128
Google Scholar
[12]
F. Kenfack, M. Bauer., Innovative Phase Change Material (PCM) for heat storage for industrial applications., Energy Procedia, 46 (2014) 310 – 316.
DOI: 10.1016/j.egypro.2014.01.187
Google Scholar
[13]
A.H. Abedin, M.A. Rosen, A critical review of thermochemical energy storage systems, Open Renew. Energy J., 4 (2011) 42–46.
Google Scholar
[14]
Y.B. Tao, Y.L. He., A review of phase change material and performance enhancement method for latent heat storage system., Renewable and Sustainable Energy Reviews, 93 (2018) 245–259.
DOI: 10.1016/j.rser.2018.05.028
Google Scholar
[15]
E. Oro, A. de Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl. Energy, 99 (2012) 513–533.
DOI: 10.1016/j.apenergy.2012.03.058
Google Scholar
[16]
Z. Zhou, J. Liu, C. Wang, X. Huang, F. Gao, S. Zhang, B. Yu., Research on the application of phase-change heat storage in centralized solar hot water system., Journal of Cleaner Production, 198 (2018) 1262-1275.
DOI: 10.1016/j.jclepro.2018.06.281
Google Scholar
[17]
A.J. Perea-Moreno, A. García-Cruz, N. Novas, F. Manzano-Agugliaro., 2017. Rooftop analysis for solar flat plate collector assessment to achieving sustainability energy. J. Clean. Prod., 148, 545-554.
DOI: 10.1016/j.jclepro.2017.02.019
Google Scholar
[18]
L.F. Cabeza, A. Castell, C. Barreneche, A.D. Gracia, A.I. Fernandez, Materials used as PCM in thermal energy storage in buildings: a review, Renew. Sustain. Energy Rev., 15 (2011) 1675–1695.
DOI: 10.1016/j.rser.2010.11.018
Google Scholar
[19]
N. Putra, S. Rawi, M. Amin, E. Kusrini, E.A. Kosasih, T.M.I. Mahlia., Preparation of beeswax/multi-walled carbon nanotubes as novel shapestable nanocomposite phase-change material for thermal energy storage., Journal of Energy Storage, 21 (2019) 32–39.
DOI: 10.1016/j.est.2018.11.007
Google Scholar
[20]
R. Elbahjaoui, H.El Qarnia. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes, Energy & Buildings, 182 (2019) 111–130.
DOI: 10.1016/j.enbuild.2018.10.010
Google Scholar
[21]
Y. Lin, G. Alva, G. Fang., Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials., Energy, 165 (2018) 685-708.
DOI: 10.1016/j.energy.2018.09.128
Google Scholar
[22]
M.K. Anuar Sharif A.A.Al-Abidi, S.Mat, K.Sopian, M.H. Ruslan, M.Y. Sulaiman, M.A.M. Rosli. Review of the application of phase change material for heating and domestic hot water systems., Renewable and Sustainable Energy Reviews, 42 (2015) 557–568.
DOI: 10.1016/j.rser.2014.09.034
Google Scholar
[23]
S.Y. Kee, Y. Munusamy, K.S. Ong., Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage., Applied Thermal Engineering, 131 (2018) 455–471.
DOI: 10.1016/j.applthermaleng.2017.12.032
Google Scholar
[24]
T.X. Li, D.L. Wu, F. He, R.Z. Wang. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage., International Journal of Heat and Mass Transfer, 115 (2017) 148–157.
DOI: 10.1016/j.ijheatmasstransfer.2017.07.056
Google Scholar
[25]
Safari, R. Saidur, F.A. Sulaiman, Y. Xu, J. Dong., A review on supercooling of phase change materials in thermal energy storage systems., Renew Sustain Energy Rev, 70 (2017) 905-019.
DOI: 10.1016/j.rser.2016.11.272
Google Scholar
[26]
T. Nomura, N. Sheng, C.Y. Zhu, G. Saito, D. Hanzaki, T. Hiraki, T. Akiyama, Microencapsulated phase change materials with high heat capacity and high cyclic durability for highetemperature thermal energy storage and transportation., Appl Energy, 2017;188:9-18.
DOI: 10.1016/j.apenergy.2016.11.025
Google Scholar
[27]
K. Pielichowska, K. Pielichowski., Phase change materials for thermal energy storage., Progress in Materials Science, 65 (2014) 67–123.
DOI: 10.1016/j.pmatsci.2014.03.005
Google Scholar
[28]
K.E. N'Tsoukpoe, H.U. Rammelberg, A.F. Lele, K. Korhammer, B.A. Watts, T. Schmidt, W.K.L. Ruck., A review on the use of calcium chloride in applied thermal engineering., Applied Thermal Engineering, 75 (2015) 513-531.
DOI: 10.1016/j.applthermaleng.2014.09.047
Google Scholar
[29]
S. Zhang, Z. Wang., Thermodynamics behavior of phase change latent heat materials in micronanoconfined spaces for thermal storage and applications., Renewable and Sustainable Energy Reviews, 82 (2018) 2319–2331.
DOI: 10.1016/j.rser.2017.08.080
Google Scholar
[30]
B. en Zalba, J. Ma Mar, L.F. Cabeza, H. Mehling., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.,Applied Thermal Engineering, 23 (2003) 251–283.
DOI: 10.1016/s1359-4311(02)00192-8
Google Scholar