Selection Principles and Investigation of Substances for Synthesis of Composite Medium-Temperature Phase Change Materials for Space Heating and Domestic Hot Water

Article Preview

Abstract:

The types of heat accumulation and the types of heat-accumulating materials are considered. It is shown that the most promising as heat-accumulating materials for heating and hot water are the salts hydrates. Based on the conducted factor analysis, a number of criteria are excluded from further consideration, which significantly reduces the list of criteria considered for selecting phase change materials (PCM) and simplifies further work on the selection of the most promising materials. There were selected from over 160 salt hydrates as PCM for the future of composite synthesis for the heating and hot water the Na (CH3COO) •3H2O, Ba (OH)2•8H2O, Mg (NO3)2 •6H2O and Zn (NO3)2•6H2O.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-171

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage., Renewable and Sustainable Energy Reviews, 82 (2018) 2730–2742.

DOI: 10.1016/j.rser.2017.10.002

Google Scholar

[2] Gutierrez, S. Ushak, V. Mamani, P. Vargas, C. Barreneche, L.F. Cabeza, M. Grágeda., Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials., Solar Energy Materials and Solar Cells, 170 (2017) 149–159.

DOI: 10.1016/j.solmat.2017.05.036

Google Scholar

[3] A.G. Mozgovoi, E.E. Shpilrain, М.А. Dibirov, М.М. Bochkov, L.N. Levina, М.М Kenisarin., Teplophizicheskie svoistva teploakkumuliruyuschih materialov, Kristalogidratt: Obzori po teplofizicheskim svoistvam veshestv., TFC. – М.: IVTAN, 2(82) (1990) 3-105.

Google Scholar

[4] L.F. Cabeza., Advances in thermal energy storage systems, methods and applications., Elsevier: Woodhead publishing series in energy, 66 (2014).

Google Scholar

[5] B.S. Nolwenn Le Pierres, F. Kuznik, K. Johannes, E. Palomo Del Barrio, J.P. Bédécarrats, S. Gibout, P. Marty, L. Zalewski, J. Soto, N. Mazet, R. Olives, J.J. Bezian, D. Pham Minh., Storage of thermal solar energy., C. R. Physique, 18 (2017) 401–414.

DOI: 10.1016/j.crhy.2017.09.008

Google Scholar

[6] D. Zou, X. Ma, X. Liu, P. Zheng, B. Cai, J. Huang, J. Guo, M. Liu., Experimental research of an air-source heat pump water heater using water - PCM for heat storage., Applied Energy, 206 (2017) 784–792.

DOI: 10.1016/j.apenergy.2017.08.209

Google Scholar

[7] N.H. Abu-Hamdeh, K.A. Alnefaie. Assessment of thermal performance of PCM in latent heat storage system for different applications., Solar Energy, 177 (2019) 317–323.

DOI: 10.1016/j.solener.2018.11.035

Google Scholar

[8] J. Jaguemont, N. Omar, P. Van den Bossche, J. Mierlo., Phase-change materials (PCM) for automotive applications: A review., Applied Thermal Engineering, 132 (2018) 308–320.

DOI: 10.1016/j.applthermaleng.2017.12.097

Google Scholar

[9] Sarbu, A comprehensive review of thermal energy storage, Sustainability, 10 (2018) 191.

Google Scholar

[10] H. Nazir, M. Batool, F. J. Bolivar Osorio, M. Isaza-Ruiz c, X. Xu, K. Vignarooban, P. Phelan, Inamuddin, A. M. Kannan., Recent developments in phase change materials for energy storage applications: A review., International Journal of Heat and Mass Transfer, 129 (2019) 491–523.

DOI: 10.1016/j.ijheatmasstransfer.2018.09.126

Google Scholar

[11] Y. Lin, G. Alva, G. Fang., Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials., Energy, 165 (2018) 685-708.

DOI: 10.1016/j.energy.2018.09.128

Google Scholar

[12] F. Kenfack, M. Bauer., Innovative Phase Change Material (PCM) for heat storage for industrial applications., Energy Procedia, 46 (2014) 310 – 316.

DOI: 10.1016/j.egypro.2014.01.187

Google Scholar

[13] A.H. Abedin, M.A. Rosen, A critical review of thermochemical energy storage systems, Open Renew. Energy J., 4 (2011) 42–46.

Google Scholar

[14] Y.B. Tao, Y.L. He., A review of phase change material and performance enhancement method for latent heat storage system., Renewable and Sustainable Energy Reviews, 93 (2018) 245–259.

DOI: 10.1016/j.rser.2018.05.028

Google Scholar

[15] E. Oro, A. de Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl. Energy, 99 (2012) 513–533.

DOI: 10.1016/j.apenergy.2012.03.058

Google Scholar

[16] Z. Zhou, J. Liu, C. Wang, X. Huang, F. Gao, S. Zhang, B. Yu., Research on the application of phase-change heat storage in centralized solar hot water system., Journal of Cleaner Production, 198 (2018) 1262-1275.

DOI: 10.1016/j.jclepro.2018.06.281

Google Scholar

[17] A.J. Perea-Moreno, A. García-Cruz, N. Novas, F. Manzano-Agugliaro., 2017. Rooftop analysis for solar flat plate collector assessment to achieving sustainability energy. J. Clean. Prod., 148, 545-554.

DOI: 10.1016/j.jclepro.2017.02.019

Google Scholar

[18] L.F. Cabeza, A. Castell, C. Barreneche, A.D. Gracia, A.I. Fernandez, Materials used as PCM in thermal energy storage in buildings: a review, Renew. Sustain. Energy Rev., 15 (2011) 1675–1695.

DOI: 10.1016/j.rser.2010.11.018

Google Scholar

[19] N. Putra, S. Rawi, M. Amin, E. Kusrini, E.A. Kosasih, T.M.I. Mahlia., Preparation of beeswax/multi-walled carbon nanotubes as novel shapestable nanocomposite phase-change material for thermal energy storage., Journal of Energy Storage, 21 (2019) 32–39.

DOI: 10.1016/j.est.2018.11.007

Google Scholar

[20] R. Elbahjaoui, H.El Qarnia. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes, Energy & Buildings, 182 (2019) 111–130.

DOI: 10.1016/j.enbuild.2018.10.010

Google Scholar

[21] Y. Lin, G. Alva, G. Fang., Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials., Energy, 165 (2018) 685-708.

DOI: 10.1016/j.energy.2018.09.128

Google Scholar

[22] M.K. Anuar Sharif A.A.Al-Abidi, S.Mat, K.Sopian, M.H. Ruslan, M.Y. Sulaiman, M.A.M. Rosli. Review of the application of phase change material for heating and domestic hot water systems., Renewable and Sustainable Energy Reviews, 42 (2015) 557–568.

DOI: 10.1016/j.rser.2014.09.034

Google Scholar

[23] S.Y. Kee, Y. Munusamy, K.S. Ong., Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage., Applied Thermal Engineering, 131 (2018) 455–471.

DOI: 10.1016/j.applthermaleng.2017.12.032

Google Scholar

[24] T.X. Li, D.L. Wu, F. He, R.Z. Wang. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage., International Journal of Heat and Mass Transfer, 115 (2017) 148–157.

DOI: 10.1016/j.ijheatmasstransfer.2017.07.056

Google Scholar

[25] Safari, R. Saidur, F.A. Sulaiman, Y. Xu, J. Dong., A review on supercooling of phase change materials in thermal energy storage systems., Renew Sustain Energy Rev, 70 (2017) 905-019.

DOI: 10.1016/j.rser.2016.11.272

Google Scholar

[26] T. Nomura, N. Sheng, C.Y. Zhu, G. Saito, D. Hanzaki, T. Hiraki, T. Akiyama, Microencapsulated phase change materials with high heat capacity and high cyclic durability for highetemperature thermal energy storage and transportation., Appl Energy, 2017;188:9-18.

DOI: 10.1016/j.apenergy.2016.11.025

Google Scholar

[27] K. Pielichowska, K. Pielichowski., Phase change materials for thermal energy storage., Progress in Materials Science, 65 (2014) 67–123.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[28] K.E. N'Tsoukpoe, H.U. Rammelberg, A.F. Lele, K. Korhammer, B.A. Watts, T. Schmidt, W.K.L. Ruck., A review on the use of calcium chloride in applied thermal engineering., Applied Thermal Engineering, 75 (2015) 513-531.

DOI: 10.1016/j.applthermaleng.2014.09.047

Google Scholar

[29] S. Zhang, Z. Wang., Thermodynamics behavior of phase change latent heat materials in micronanoconfined spaces for thermal storage and applications., Renewable and Sustainable Energy Reviews, 82 (2018) 2319–2331.

DOI: 10.1016/j.rser.2017.08.080

Google Scholar

[30] B. en Zalba, J. Ma Mar, L.F. Cabeza, H. Mehling., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.,Applied Thermal Engineering, 23 (2003) 251–283.

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar