[1]
V.I. Pavlenko, I.S. Epifanovskii, R.N. Yastrebinskii, O.V. Kuprieva, Thermoplastic constructional composite material for radiation protection, Inor. Mater.: Appl. Res. 2(2) (2011) 47–52.
DOI: 10.1134/s207511331102016x
Google Scholar
[2]
V.I. Pavlenko, V.M. Lipkanskij, R.N. Yastrebinskii, Calculations of the Passage of Gamma-Quanta through a Polymer Radiation-Protective Composite, J. Engin. Phys. Thermophys. 1(77) (2004) 11-14.
DOI: 10.1023/b:joep.0000020713.63937.43
Google Scholar
[3]
N.I. Cherkashina, A.V. Pavlenko, Synthesis of Polymer Composite Based on Polyimide and Bi12SiO20 Sillenite, Polymer Plast. Tech. Eng. 57 (2018) 1923-1931.
DOI: 10.1080/03602559.2018.1447129
Google Scholar
[4]
R.N. Yastrebinsky, Distribution neutron and gamma of radiation in the protective composite with various content of atoms of boron, Probl Atom. Sci. Techn. 5 (2016) 66-72.
Google Scholar
[5]
G. He, F. Gong, J. Liu, L. Pan, J. Zhang, S. Liu, Improved mechanical properties of highly explosive filled polymer composites through graphene nanoplatelets, Polym. compos. 39 (2018) 3924-3934.
DOI: 10.1002/pc.24431
Google Scholar
[6]
V.I. Pavlenko, G.G. Bondarenko, R.N. Yastrebinsky, Radiation resistance of struc-tural radiation-protective composite material based on magnetite matrix, Inorg. Mater.: Appl. Res. 5(7) (2016) 718-723.
DOI: 10.1134/s2075113316050270
Google Scholar
[7]
R.N. Yastrebinsky, Decrease gripping gamma–radiation scale composite neutron and protective material on the basis of the modified hydride of the titan with various content of atoms of bor, Probl. of Atom. Sci. and Techn. 4(110) (2017) 103–106.
Google Scholar
[8]
V.I. Pavlenko, R.N. Yastrebinskii, D.V. Voronov, Investigation of heavy radiation–shielding concrete after activation by fast neutrons and gamma radiation, J.Engin. Phys.Thermophys. 4(81) (2008) 686–691.
DOI: 10.1007/s10891-008-0085-5
Google Scholar
[9]
Y. Bréchet, J.-Y Cavaillé, E. Chabert, L. Chazeau, R. Dendievel, L. Flandin, C. Gauthier, Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions. Adv. Eng. Mater. 3 (2001) 571 - 577.
DOI: 10.1002/1527-2648(200108)3:8<571::aid-adem571>3.0.co;2-m
Google Scholar
[10]
R.N. Yastrebinsky, G.G. Bondarenko, A.V. Pavlenko, Structural Features of Mineral Crystalline Phases and Defectiveness of Bismuth Organo-siliconate Crystals at High Temperatures, Inorg. Mater.: Appl. Res. 5(9) (2018) 825-831.
DOI: 10.1134/s2075113318050313
Google Scholar
[11]
D. Metin, F. Tihminlioglu, D. Balkose, S. Ulku, The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites, Compos. Part A-Appl. S. 35 (2004) 23–32.
Google Scholar
[12]
T.L.A.C. Rocha, M.M. Jacobi, D. Samios, R.H. Schuster, Evaluation of the influence of the polymer-filler interaction on compounds based on epoxidized elastomeric matrix and precipitated silica. Polímeros. 16 (2006) 111-115.
DOI: 10.1590/s0104-14282006000200010
Google Scholar
[13]
R.N. Yastrebinsky, V.I. Pavlenko, A.V. Karnauhov, Radiation resistance radiation–defensive the ferrous aggregates in the gamma fields, Probl. of Atom. Sci. and Techn. 2 (2013) 46–49.
Google Scholar
[14]
P.O. Rusinov, Z.M. Blednova, Effect of Mechanical Activation on the Structural Parameters of Ceramic Powders cBN-Co, hBN-Co, Key Engineering Materials. 730 (2017) 333-338.
DOI: 10.4028/www.scientific.net/kem.730.333
Google Scholar
[15]
Bohacs, Katalin & Faitli, Jozsef & Bokanyi, Ljudmilla & Mucsi, Gabor. (2017). Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill. Archives of Metallurgy and Materials. 62. 1399-1406. 10.1515/amm-2017-0216.
DOI: 10.1515/amm-2017-0216
Google Scholar
[16]
I. Colombo, G. Grassi, M. Grassi, Drug Mechanochemical Activation, J. Pharm. Sci. 98 (2009) 3961-3986.
DOI: 10.1002/jps.21733
Google Scholar
[17]
R.N. Yastrebinsky, Attenuation of Neutron and Gamma Radiation by a Com-posite Material Based on Modified Titanium Hydride with a Varied Boron Content, Russ. Phys. J. 12 (2018) 2164-2168.
DOI: 10.1007/s11182-018-1341-6
Google Scholar
[18]
A. Panda, K. Dyadyura, J. Valíček, M. Harničárová, J. Zajac, V. Modrák,I. Pandová, P. Vrábel, E. Nováková-Marcinčínová, Z. Pavelek, Manufacturing Technology of Composite Materials–Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene, Materials (Basel). 10 (2017) 377.
DOI: 10.3390/ma10040377
Google Scholar
[19]
O.V. Gorbunova, A.V. Vasilevich, O.N. Baklanova, A.B. Arbuzov, Y.S. Poserkova, V.A. Likholobov, The Influence of the Mechanical Activation on the Graphite Electric Conductivity, Procedia Engineering, 113 (2015) 484-489.
DOI: 10.1016/j.proeng.2015.07.340
Google Scholar
[20]
M.S. Manivannan, M.N. Silberstein, Theoretical framework and design of echanochemically augmented polymer composites, Extreme Mech. Letters. 19 (2018) 27-38.
DOI: 10.1016/j.eml.2017.12.005
Google Scholar
[21]
S.A. Sleptsova, N.N. Lazareva, Yu.V. Kapitonova, Effect of Mechanically Activated Layered Silicate on the Properties and Structure of Polytetrafluoroethylene, Materials Science Forum, 945 (2019) 384-388.
DOI: 10.4028/www.scientific.net/msf.945.384
Google Scholar
[22]
A.A. Okhlopkova, L.A. Nikiforov, T.A. Okhlopkova, R.V. Borisova, Polymer Nanocomposites Exploited under The Arctic Conditions, in IV Sino-Russian ASRTU Symposium on Advanced Materials and Materials and Processing Technology, KnE Materials Science. (2016) 122–128.
DOI: 10.18502/kms.v1i1.573
Google Scholar