Thermophysical Properties of Syntactic Foams Based on Polymethylphenylsiloxane Resin and Hollow Glass Microspheres

Article Preview

Abstract:

The syntactic foams based on polymethylphenylsiloxane resin filled by hollow glass microspheres were developed for using in different applications of construction industry. Thermophysical properties of the developed syntactic foams were analyzed in this work. According to the study results, with an increase of polymethylphenylsiloxane content in the syntactic foam, the thermal conductivity and the specific heat capacity increased. The coefficient of thermal linear expansion was dependent on the ratio of the components, reaching the lowest value for the composites with a minimum binder content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-368

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bardella, F. Genna, On the elastic behavior of syntactic foams, Int. J. Solids Struct. 38 (2001) 307-333.

Google Scholar

[2] A.F. Yarullin, L.E. Kusnetsova, A.F. Yarullina, O.V. Stoyanov, Electrophysical properties of oli-gomer-polymer complexes based on heat-resistant oligoaryleneamines, Polym. Sci. Ser. D. 6(2) (2013) 109-115.

DOI: 10.1134/s1995421213020172

Google Scholar

[3] V.Yu. Chukhlanov, O.G. Selivanov, Electrical properties of syntactic foams based on hollow car-bon microspheres and polydimethylsiloxane, Russ. Phys. J. 59(7) (2016) 944–948.

DOI: 10.1007/s11182-016-0858-9

Google Scholar

[4] N.N. Smirnova, Pervaporation properties of film and composite membrabes based on an inter-polyelectrolyte complex of sulfonate-containing aromatic copolyamide, Russ. J. Appl. Chem. 91(3) (2018) 404-411.

DOI: 10.1134/s1070427218030102

Google Scholar

[5] E.M. Wouterson, F.Y. Boey, X. Hu, S.C. Wong, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol. 65 (2005) 1840-1847.

DOI: 10.1016/j.compscitech.2005.03.012

Google Scholar

[6] V.K. Skachkova, А.V. Lyubimov, G.V. Lyubimova, М.N. Gusev, V.М. Lalayan, А.Y. Shaulov, А.А. Berlin, Optically transparent heat resistant nanocomposite materials on the basis of epoxy and silicon oxide, Russian nanotechnologies. 8(1-2) (2013) 82-86.

DOI: 10.1134/s199507801301014x

Google Scholar

[7] V.Yu. Chukhlanov, S.S. Kriushenko, N.V. Chukhlanova, Elastic Polyurethane Foams Modified by Tetraethoxysilane, Theor. Found. Chem. Eng. 49(4) (2015) 518-522.

DOI: 10.1134/s0040579515040065

Google Scholar

[8] E.M. Wouterson, F.Y. Boey, X. Hu, S.C. Wong, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol. 65 (2005) 1840-1847.

DOI: 10.1016/j.compscitech.2005.03.012

Google Scholar

[9] N.T. Kamar, M.M. Hossain, A. Khomenko, M. Haq, L.T. Drzal, A.Loos, Interlaminar reinforcement of glass fiber/epoxy composites with grapheme nanoplatets, Сomposites Part A: Applied Science and Manufacturing. 70 (2015) 82-92.

DOI: 10.1016/j.compositesa.2014.12.010

Google Scholar

[10] J. Anthony, Jr. O'Lenick, Silicone Polymers: New Possibilities in Nanotechnology, American Chemical Society. Symposium Series. 96 (2007) 165-175.

Google Scholar

[11] M.A. Yarmolenko, A.A. Rogachev, A.V. Rogachou, D.L. Gorbochev, Kinetic characteristics of dispersion of organosilicon compounds in vacuum and molecular structure of the coatings, de-posited from volatile products of dispersion, Problems of Physics, Mathematics and Technics. 8(3) (2011) 32-38.

DOI: 10.54341/20778708_2022_1_50_44

Google Scholar

[12] S.T. Peters, Handbook of Composites Hardcover, 2nd ed., Springer US, New York, (1997).

Google Scholar

[13] N.N. Smirnova, Yu.A. Fedotov, Yu.E. Kirsh, Interpolymer reactions involving sulfonate containing aromatic poly(amides) and the properties and application of their products, Polym. Sci. Ser. A. 43(7) (2001) 679-683.

Google Scholar

[14] M. Yoonessi, M. Lebrón-Colon, D. Scheiman, M.A. Meador, Carbon nanotube epoxy nano-composites: the effects of interfacial modifications on dynamic mechanical properties of the nanocomposite, ACS Appl. Mater. Interfaces. 6 (19) (2014) 16621-16630.

DOI: 10.1021/am5056849

Google Scholar

[15] V.Yu. Chukhlanov, O.G. Selivanov, N.V. Chukhlanova, A sealing composition with high dielectric characteristics and increased optical transparency on the basis of epoxy diane resin modified with phenylethoxysilane, Polym. Sci. Ser. D 9(3) (2016) 281-285.

DOI: 10.1134/s1995421216030060

Google Scholar

[16] A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Technol. 62(15) (2002) 1993-1998.

DOI: 10.1016/s0266-3538(02)00129-x

Google Scholar

[17] S.J. Clarson, J.A. Semlyen, Siloxane Polymers, Prentice Hall, New Jersey, (1993).

Google Scholar

[18] Russian Standard GOST 23630.2-79 Plastics. Method for determining thermal conductivity, M.: Izdatel'stvo standartov, (1979).

Google Scholar

[19] Russian Standard GOST 23630.1-79 Plastics, Method for determining individual heat capacity, M.: Izdatel'stvo standartov, (1979).

Google Scholar

[20] Russian Standard GOST 15173-70 Plastics, Method for determination of mean coefficient of linear thermal expansion, M.: Izdatel'stvo standartov, (1970).

Google Scholar

[21] K. Pietrak, T.S. Wisniewski, A review of models for effective thermal conductivity of composite materials, Journal of Power Technologies. 95 (1) (2015) 14-24.

Google Scholar

[22] A. Tsekmes, R. Kochetov, H.F. Peter, Morshuis, J.J. Smit, Thermal conductivity of polymeric composites: a review, 2013 IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30 – July 4, 2013.

DOI: 10.1109/icsd.2013.6619698

Google Scholar