[1]
L. Bardella, F. Genna, On the elastic behavior of syntactic foams, Int. J. Solids Struct. 38 (2001) 307-333.
Google Scholar
[2]
A.F. Yarullin, L.E. Kusnetsova, A.F. Yarullina, O.V. Stoyanov, Electrophysical properties of oli-gomer-polymer complexes based on heat-resistant oligoaryleneamines, Polym. Sci. Ser. D. 6(2) (2013) 109-115.
DOI: 10.1134/s1995421213020172
Google Scholar
[3]
V.Yu. Chukhlanov, O.G. Selivanov, Electrical properties of syntactic foams based on hollow car-bon microspheres and polydimethylsiloxane, Russ. Phys. J. 59(7) (2016) 944–948.
DOI: 10.1007/s11182-016-0858-9
Google Scholar
[4]
N.N. Smirnova, Pervaporation properties of film and composite membrabes based on an inter-polyelectrolyte complex of sulfonate-containing aromatic copolyamide, Russ. J. Appl. Chem. 91(3) (2018) 404-411.
DOI: 10.1134/s1070427218030102
Google Scholar
[5]
E.M. Wouterson, F.Y. Boey, X. Hu, S.C. Wong, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol. 65 (2005) 1840-1847.
DOI: 10.1016/j.compscitech.2005.03.012
Google Scholar
[6]
V.K. Skachkova, А.V. Lyubimov, G.V. Lyubimova, М.N. Gusev, V.М. Lalayan, А.Y. Shaulov, А.А. Berlin, Optically transparent heat resistant nanocomposite materials on the basis of epoxy and silicon oxide, Russian nanotechnologies. 8(1-2) (2013) 82-86.
DOI: 10.1134/s199507801301014x
Google Scholar
[7]
V.Yu. Chukhlanov, S.S. Kriushenko, N.V. Chukhlanova, Elastic Polyurethane Foams Modified by Tetraethoxysilane, Theor. Found. Chem. Eng. 49(4) (2015) 518-522.
DOI: 10.1134/s0040579515040065
Google Scholar
[8]
E.M. Wouterson, F.Y. Boey, X. Hu, S.C. Wong, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol. 65 (2005) 1840-1847.
DOI: 10.1016/j.compscitech.2005.03.012
Google Scholar
[9]
N.T. Kamar, M.M. Hossain, A. Khomenko, M. Haq, L.T. Drzal, A.Loos, Interlaminar reinforcement of glass fiber/epoxy composites with grapheme nanoplatets, Сomposites Part A: Applied Science and Manufacturing. 70 (2015) 82-92.
DOI: 10.1016/j.compositesa.2014.12.010
Google Scholar
[10]
J. Anthony, Jr. O'Lenick, Silicone Polymers: New Possibilities in Nanotechnology, American Chemical Society. Symposium Series. 96 (2007) 165-175.
Google Scholar
[11]
M.A. Yarmolenko, A.A. Rogachev, A.V. Rogachou, D.L. Gorbochev, Kinetic characteristics of dispersion of organosilicon compounds in vacuum and molecular structure of the coatings, de-posited from volatile products of dispersion, Problems of Physics, Mathematics and Technics. 8(3) (2011) 32-38.
DOI: 10.54341/20778708_2022_1_50_44
Google Scholar
[12]
S.T. Peters, Handbook of Composites Hardcover, 2nd ed., Springer US, New York, (1997).
Google Scholar
[13]
N.N. Smirnova, Yu.A. Fedotov, Yu.E. Kirsh, Interpolymer reactions involving sulfonate containing aromatic poly(amides) and the properties and application of their products, Polym. Sci. Ser. A. 43(7) (2001) 679-683.
Google Scholar
[14]
M. Yoonessi, M. Lebrón-Colon, D. Scheiman, M.A. Meador, Carbon nanotube epoxy nano-composites: the effects of interfacial modifications on dynamic mechanical properties of the nanocomposite, ACS Appl. Mater. Interfaces. 6 (19) (2014) 16621-16630.
DOI: 10.1021/am5056849
Google Scholar
[15]
V.Yu. Chukhlanov, O.G. Selivanov, N.V. Chukhlanova, A sealing composition with high dielectric characteristics and increased optical transparency on the basis of epoxy diane resin modified with phenylethoxysilane, Polym. Sci. Ser. D 9(3) (2016) 281-285.
DOI: 10.1134/s1995421216030060
Google Scholar
[16]
A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Technol. 62(15) (2002) 1993-1998.
DOI: 10.1016/s0266-3538(02)00129-x
Google Scholar
[17]
S.J. Clarson, J.A. Semlyen, Siloxane Polymers, Prentice Hall, New Jersey, (1993).
Google Scholar
[18]
Russian Standard GOST 23630.2-79 Plastics. Method for determining thermal conductivity, M.: Izdatel'stvo standartov, (1979).
Google Scholar
[19]
Russian Standard GOST 23630.1-79 Plastics, Method for determining individual heat capacity, M.: Izdatel'stvo standartov, (1979).
Google Scholar
[20]
Russian Standard GOST 15173-70 Plastics, Method for determination of mean coefficient of linear thermal expansion, M.: Izdatel'stvo standartov, (1970).
Google Scholar
[21]
K. Pietrak, T.S. Wisniewski, A review of models for effective thermal conductivity of composite materials, Journal of Power Technologies. 95 (1) (2015) 14-24.
Google Scholar
[22]
A. Tsekmes, R. Kochetov, H.F. Peter, Morshuis, J.J. Smit, Thermal conductivity of polymeric composites: a review, 2013 IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30 – July 4, 2013.
DOI: 10.1109/icsd.2013.6619698
Google Scholar