Microstructure of Filled Biocomposites Based on Polyolefin Blends

Article Preview

Abstract:

Binary and ternary composites based on low-density polyethylene and a copolymer of ethylene and vinyl acetate with / without the addition of microcrystalline cellulose have been investigated. The analysis of microstructure of the filled composites has shown more uniform distribution of particles at the mechanochemical treatment of the composite melt. Based on DSC study results, polymers amorphisation in the composites occurred under ultrasonic action. The stress-related characteristics of the materials increased that is explained by improved compatibility and partial copolymerization of the blended polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-374

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Asim, M. Jawaid, N. Saba, S. Ramengmawii, M. Nasir, M.T.H. Sultan, Processing of hybrid polymer composites-a review, in: V.K. Thakur, M.K. Thakur, A. Pappu (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 2017, p.1–22.

DOI: 10.1016/b978-0-08-100789-1.00001-0

Google Scholar

[2] T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview, Cogent Eng. 5:1446667 (2018) 1-18.

DOI: 10.1080/23311916.2018.1446667

Google Scholar

[3] M. Bassyouni, U. Javaid, S.W. ul Hasan, Bio-based hybrid polymer composites, in: V.K. Thakur, M.K. Thakur, A. Pappu (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 2017, p.23–70.

DOI: 10.1016/b978-0-08-100789-1.00002-2

Google Scholar

[4] S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, G. Hinrichsen, A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol. Mater. Eng. 289(11) (2004) 955–974.

DOI: 10.1002/mame.200400132

Google Scholar

[5] D.V. Kolotilin, E.E. Potapov, S.V. Reznichenko, V.S. Polyakov, T.Y. Fedorova, Hydrolysates of sulphur-containing polypeptides (keratins) as new ingredients for polymeric composite materials, Int. Polym. Sci. Technol. 44(3) (2017) 7-12.

DOI: 10.1177/0307174x1704400302

Google Scholar

[6] E.E. Mastalygina, A.A. Popov, P.V. Pantyukhov, Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi, IOP Conf. Ser. Mater. Sci. Eng. 213(1) 012011 (2017) 1-8.

DOI: 10.1088/1757-899x/213/1/012011

Google Scholar

[7] A.Yu. Anpilova, E.E. Mastalygina, I.A. Mikhaylov, A.A. Popov, Z.S. Kartasheva, Morphology and physical-chemical properties of celluloses obtained by different methods, AIP Conf. Proc. 1909 020008 (2017) 1-4.

DOI: 10.1063/1.5013689

Google Scholar

[8] A.Yu. Anpilova, E.E. Mastalygina, N.P. Khrameeva, A.A. Popov, Surface modification of microcrystalline cellulose by fatty acids, AIP Conf. Proc. 2051 020018 (2018) 1-4.

DOI: 10.1063/1.5083261

Google Scholar

[9] P.G. Shelenkov, P.V. Pantyukhov, A.A. Popov, Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour, IOP Conf. Ser. Mater. Sci. Eng. 369 012043 (2018) 1-5.

DOI: 10.1088/1757-899x/369/1/012043

Google Scholar

[10] H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic, J. of Mater. Process. Technol. 211 (2011) 1729–1735.

Google Scholar

[11] L. Zhang, D.G. Eskin, L. Katgerman, Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys, J. Mater. Sci. 46(15) (2011) 5252–5259.

DOI: 10.1007/s10853-011-5463-2

Google Scholar

[12] W. Khalifa, Y. Tsunekawa, M. Okumiya, Effect of ultrasonic melt treatment on microstructure of A356 aluminium cast alloys, Int. J. Cast Met. Res. 21(1-4) (2013) 129-134.

DOI: 10.1179/136404608x361819

Google Scholar

[13] G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd ed., CRC Press, London, (1998).

Google Scholar

[14] B. Bittmann, F. Haupert, A.K. Schlarb, Ultrasonic dispersion of inorganic nanoparticles in epoxy resin, Ultrason. Sonochem. 16 (2009) 622–628.

DOI: 10.1016/j.ultsonch.2009.01.006

Google Scholar

[15] D. Shahdan, S.Hj. Ahmad, M.H. Flaifel, Effect of Ultrasonic Treatment on Tensile Properties of PLA/LNR/NiZn Ferrite Nanocomposite, AIP Conf. Proc. 1571(75) (2013) 75-82.

DOI: 10.1063/1.4858633

Google Scholar

[16] K.S. Suslick, G.J. Price, Application of ultrasound to materials chemistry, Annu. Rev. Mater. Sci. 29 (1999) 295–326.

DOI: 10.1146/annurev.matsci.29.1.295

Google Scholar

[17] H. Kim, J. G. Ryu, J. W. Lee, Evolution of phase morphology and in-situ compatibilization of polymer blends during ultrasound-assisted melt mixing, Korea-Australia Rheol. J. 14(3) (2002) 121-128.

Google Scholar

[18] G. Chen, S. Guo, H. Li, Ultrasonic improvement of the compatibility and rheological behavior of high-density polyethylene/polystyrene blends, J. Appl. Polym. Sci. 86(1) (2002) 23-32.

DOI: 10.1002/app.10826

Google Scholar

[19] ISO 11357-3:2011 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization.

DOI: 10.3403/30177315u

Google Scholar

[20] BS EN ISO 527-3:2018 Plastics, Determination of tensile properties, Test conditions for films and sheets.

Google Scholar

[21] E.E. Mastalygina, O.V. Shatalova, N.N. Kolesnikova, A.A. Popov, A.V. Krivandin, Modification of isotactic polypropylene by additives of low-density polyethylene and powdered cellulose, Inorg. Mater. Appl. Res. 7(1) (2016) 58-65.

DOI: 10.1134/s2075113316010147

Google Scholar

[22] A. Zykova, P. Pantyukhov, A. Popov, Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content, AIP Conf. Proc. 1736(4949698) (2016) 1-4.

DOI: 10.1063/1.4949698

Google Scholar

[23] E.E. Mastalygina, A.A. Popov, Mechanical properties and stress-strain behaviour of binary and ternary composites based on polyolefins and vegetable fillers, Solid State Phenomena. 265 SSP (2017) 221-226.

DOI: 10.4028/www.scientific.net/ssp.265.221

Google Scholar