[1]
M. Asim, M. Jawaid, N. Saba, S. Ramengmawii, M. Nasir, M.T.H. Sultan, Processing of hybrid polymer composites-a review, in: V.K. Thakur, M.K. Thakur, A. Pappu (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 2017, p.1–22.
DOI: 10.1016/b978-0-08-100789-1.00001-0
Google Scholar
[2]
T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview, Cogent Eng. 5:1446667 (2018) 1-18.
DOI: 10.1080/23311916.2018.1446667
Google Scholar
[3]
M. Bassyouni, U. Javaid, S.W. ul Hasan, Bio-based hybrid polymer composites, in: V.K. Thakur, M.K. Thakur, A. Pappu (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 2017, p.23–70.
DOI: 10.1016/b978-0-08-100789-1.00002-2
Google Scholar
[4]
S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, G. Hinrichsen, A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol. Mater. Eng. 289(11) (2004) 955–974.
DOI: 10.1002/mame.200400132
Google Scholar
[5]
D.V. Kolotilin, E.E. Potapov, S.V. Reznichenko, V.S. Polyakov, T.Y. Fedorova, Hydrolysates of sulphur-containing polypeptides (keratins) as new ingredients for polymeric composite materials, Int. Polym. Sci. Technol. 44(3) (2017) 7-12.
DOI: 10.1177/0307174x1704400302
Google Scholar
[6]
E.E. Mastalygina, A.A. Popov, P.V. Pantyukhov, Effect of biobased fillers nature on biodeterioration of hybrid polyethylene composites by mold fungi, IOP Conf. Ser. Mater. Sci. Eng. 213(1) 012011 (2017) 1-8.
DOI: 10.1088/1757-899x/213/1/012011
Google Scholar
[7]
A.Yu. Anpilova, E.E. Mastalygina, I.A. Mikhaylov, A.A. Popov, Z.S. Kartasheva, Morphology and physical-chemical properties of celluloses obtained by different methods, AIP Conf. Proc. 1909 020008 (2017) 1-4.
DOI: 10.1063/1.5013689
Google Scholar
[8]
A.Yu. Anpilova, E.E. Mastalygina, N.P. Khrameeva, A.A. Popov, Surface modification of microcrystalline cellulose by fatty acids, AIP Conf. Proc. 2051 020018 (2018) 1-4.
DOI: 10.1063/1.5083261
Google Scholar
[9]
P.G. Shelenkov, P.V. Pantyukhov, A.A. Popov, Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour, IOP Conf. Ser. Mater. Sci. Eng. 369 012043 (2018) 1-5.
DOI: 10.1088/1757-899x/369/1/012043
Google Scholar
[10]
H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic, J. of Mater. Process. Technol. 211 (2011) 1729–1735.
Google Scholar
[11]
L. Zhang, D.G. Eskin, L. Katgerman, Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys, J. Mater. Sci. 46(15) (2011) 5252–5259.
DOI: 10.1007/s10853-011-5463-2
Google Scholar
[12]
W. Khalifa, Y. Tsunekawa, M. Okumiya, Effect of ultrasonic melt treatment on microstructure of A356 aluminium cast alloys, Int. J. Cast Met. Res. 21(1-4) (2013) 129-134.
DOI: 10.1179/136404608x361819
Google Scholar
[13]
G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd ed., CRC Press, London, (1998).
Google Scholar
[14]
B. Bittmann, F. Haupert, A.K. Schlarb, Ultrasonic dispersion of inorganic nanoparticles in epoxy resin, Ultrason. Sonochem. 16 (2009) 622–628.
DOI: 10.1016/j.ultsonch.2009.01.006
Google Scholar
[15]
D. Shahdan, S.Hj. Ahmad, M.H. Flaifel, Effect of Ultrasonic Treatment on Tensile Properties of PLA/LNR/NiZn Ferrite Nanocomposite, AIP Conf. Proc. 1571(75) (2013) 75-82.
DOI: 10.1063/1.4858633
Google Scholar
[16]
K.S. Suslick, G.J. Price, Application of ultrasound to materials chemistry, Annu. Rev. Mater. Sci. 29 (1999) 295–326.
DOI: 10.1146/annurev.matsci.29.1.295
Google Scholar
[17]
H. Kim, J. G. Ryu, J. W. Lee, Evolution of phase morphology and in-situ compatibilization of polymer blends during ultrasound-assisted melt mixing, Korea-Australia Rheol. J. 14(3) (2002) 121-128.
Google Scholar
[18]
G. Chen, S. Guo, H. Li, Ultrasonic improvement of the compatibility and rheological behavior of high-density polyethylene/polystyrene blends, J. Appl. Polym. Sci. 86(1) (2002) 23-32.
DOI: 10.1002/app.10826
Google Scholar
[19]
ISO 11357-3:2011 Plastics – Differential scanning calorimetry (DSC) – Part 3: Determination of temperature and enthalpy of melting and crystallization.
DOI: 10.3403/30177315u
Google Scholar
[20]
BS EN ISO 527-3:2018 Plastics, Determination of tensile properties, Test conditions for films and sheets.
Google Scholar
[21]
E.E. Mastalygina, O.V. Shatalova, N.N. Kolesnikova, A.A. Popov, A.V. Krivandin, Modification of isotactic polypropylene by additives of low-density polyethylene and powdered cellulose, Inorg. Mater. Appl. Res. 7(1) (2016) 58-65.
DOI: 10.1134/s2075113316010147
Google Scholar
[22]
A. Zykova, P. Pantyukhov, A. Popov, Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content, AIP Conf. Proc. 1736(4949698) (2016) 1-4.
DOI: 10.1063/1.4949698
Google Scholar
[23]
E.E. Mastalygina, A.A. Popov, Mechanical properties and stress-strain behaviour of binary and ternary composites based on polyolefins and vegetable fillers, Solid State Phenomena. 265 SSP (2017) 221-226.
DOI: 10.4028/www.scientific.net/ssp.265.221
Google Scholar