Structure and Properties of Fibrous Materials Based on Poly(-3-Hydroxybutyrate)

Article Preview

Abstract:

The article studies the supramolecular structure of polymer matrices for sustained isolation of drugs based on ultrathin fibers of polyhydroxybutyrate obtained by electrospinning method. Dipyridamole was chosen as a model drug. The concentration of dipyridamole in the fibers ranged from 1 to 5%. The morphology of nonwoven fibrous materials was investigated by scanning electron microscopy, differential scanning calorimetry, electron paramagnetic resonance. It was shown that the addition of the dipyridamole leads to a change in the fiber geometry. Fibers based on polyhydroxybutyrate are characterized by non-equilibrium molecular structure. In the current work, it was found that the addition of dipyridamole causes extra crystallization processes and the molecular mobility in the amorphous regions of the polymer slows down

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-379

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Dubey, C.V. Chaudhari, Y.K. Bhardwaj and L. Varshney: Advanced Structured Materials. 1 (2017) 66.

Google Scholar

[2] K. Ariga, A. Vinu and M. Miyahara, Current Nanoscience. 2 (2006) 197.

Google Scholar

[3] J.L. Mann, A.C. Yu, G. Agmon and E.A. Appel, Supramolecular polymeric biomaterials. Biomaterials Science. 6 (2018) 10.

DOI: 10.1039/c7bm00780a

Google Scholar

[4] LaVan D.A., T. McGuire and R. Langer, Nature Biotechnology. 21 (2003) 1184.

Google Scholar

[5] T. Ishihara and T. Mizushima, Expert Opinion on Drug Delivery. 7 (2010) 565.

Google Scholar

[6] M.K. Haidar, H. Erol, Current Topics in Medicinal Chemistry. 17 (2017) 1564.

Google Scholar

[7] N. Bhardwaj, S.C. Kundu, Biotechnology Advances. 28 (2010) 325.

Google Scholar

[8] R.M. Streicher, M. Schmidt, S. Fiorito, Nanomedicine. 2 (2007) 861.

Google Scholar

[9] S.P. Miguel, D.R. Figueira, D. Sim˜oes et al., Colloids and Surfaces B: Biointerfaces. 169 (2018) 60.

Google Scholar

[10] B. Zhou, Y. Li, H. Deng, Y. Hu, B. Li, Colloids and Surfaces B: Biointerfaces. 116 (2014) 432.

Google Scholar

[11] H. Cheng, X. Yang, X. Che, M. Yang, G. Zhai, Materials Science and Engineering. 90 (2018) 750.

Google Scholar

[12] K.V. Malafeev, O.A. Moskalyuk., V.E. Yudin, et al., Polymer Science Series A. 59 (2017) 53.

Google Scholar

[13] K. Cao, Y. Liu, A.A. Olkhov, V. Siracusan, A.L. Iordanskii, Drug Deliv. and Transl. Res. 8 (2018) 291.

Google Scholar

[14] R. Dorati, A. DeTrizio, T. Modena, et al., Pharmaceuticals. 10 (2017) 4.

Google Scholar

[15] S. Das, A. B. Baker, Frontiers in Bioengineering and Biotechnology. 4 (2016) 82.

Google Scholar

[16] A.L. Iordanskii, A.A. Olkhov, S.G. Karpova, E.L. Kucherenko, R.U. Kosenko, S.Z. Rogovina, A.E. Chalih, A.A. Berlin, Polymer Science. Series A. 59, 3 (2017) 273–284.

Google Scholar

[17] J. Siepmann, R.A. Siegel, M.J. Rathbone, Fundamentals and Applications of Controlled Release Drug Delivery London, Springer, Heidelberg, New York, (2012).

DOI: 10.1007/978-1-4614-0881-9

Google Scholar

[18] A.V. Lobanov, E.N. Golubev and M.Ya. Mel'nikov, Mendeleev Communications. 20, 6 (2010) 343-345.

Google Scholar

[19] M. Unverdorben, A. Spielberger, M. Schywalsky (Eds.), Cardio-vasc. Intervent. Radiol. 25, 2 (2002) 127.

Google Scholar

[20] A. Olkhov, E. Kucherenko, P. Pantyukhov, A. Zykova, Karpova S. and A. Iordanskii, IOP Conf. Series: Materials Science and Engineering. 175 (2017) 012007-1-012007-4.

DOI: 10.1088/1757-899x/175/1/012007

Google Scholar