Structural-Phase State of the Interphase Boundary at Thermal Diffusion Metallization of Diamond Grains by Cr and Ti

Article Preview

Abstract:

Structural-phase state of the diamond-metallized coating interphase boundary after thermal diffusion metallization of diamond grains by transition metals Cr, Ti were studied. Metallization were conducted under temperature-time mode corresponding to the sintering of cemented carbide matrices with Cu impregnation. The structural-phase state of the metallized coating and diamond-coating interphase boundary was studied by scanning electron microscopy, X-ray phase analysis and Raman spectroscopy. It was found that a thin continuous metal carbide coating chemically bonded to the diamond and consisting of the corresponding metal, their carbides and small amount of graphite phases is formed during thermal diffusion metallization of diamond by Cr and Ti under the conditions specified in the experiment. It was shown that graphite is formed not by a continuous layer, but in the form of local inclusions. This ensures a strong adhesion of the metallized coating to the diamond through the carbides of the corresponding metals. The results can be useful in the development of compositions and technological methods that provide an increased level of diamond retention in the matrices of tools based on cemented carbide powder mixtures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

670-675

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.I. Bugakov, A.I. Laptev, A.A. Pozdnyakov, Uluchshenie zakrepleniya almaznogo zerna v svyazke pri izgotovlenii, Izvestiya Vuzov. Tsvetnaya Metallurgiya. 6 (2005) 69–72.

Google Scholar

[2] M.M. Yakhutlov, B.S. Karamurzov, Z.Zh. Berov, U.D. Batyrov, R.M. Nartyzhev, Napravlennoe formirovanie mezhfaznoi granitsy almaz-matritsa s ispolzovaniem nanopokrytiy, Proc. of the Kabardino-Balkarian state university. 1(4) (2011) 23–25.

Google Scholar

[3] A.M. Isonkin, T.M. Duda, N.N. Belyavina, V.N. Tkach, Vliyanie metallizatsii almazov na strukturoobrazovanie i prochnost kompozitsionnogo materiala, Naukovi praci DonNTU. Seriya «Girnicho-geologichna». 19 (2013) 146–154.

Google Scholar

[4] A. Peterson, J. Agren, Sintering shrinkage of WC-Co materials with bimodal grain size distribution, Acta Materialia. 53 (2005) 1665–1671.

DOI: 10.1016/j.actamat.2004.12.016

Google Scholar

[5] P.A. Vityaz, V.I. Zhornik, V.A. Kukareko, Issledovanie strukturno-fazovogo sostoyaniya i svoistv spechennykh splavov, modernizirivannukh nanorazmernymi almazosoderzhaschimi dobavkami, Proc. of the National Academy of Sciences of Belarus, Phys.-tech. series. 3 (2011) 5–17.

Google Scholar

[6] D.D. Gu, Y.-f. Shen, P. Dai, M.-c. Yang, Microstucture and property of sub-micro WC-10 %Co particulate reinforced Cu matrix composited prepared by selective laser sintering, Trans. Nonferrous Met. Soc. China. 16 (2006) 357–362.

DOI: 10.1016/s1003-6326(06)60061-7

Google Scholar

[7] R. Polini, Chemically vapour deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance, Thin Solid Films. 515 (2006) 4–13.

DOI: 10.1016/j.tsf.2005.12.042

Google Scholar

[8] H. Moriguchi, K. Tsuduki, A. Ikegaya, Y. Miyamoto, Y. Morisada, Sintering behavior and properties of diamond/cemented carbides, Int. Journal of Refractory Metals & Hard Materials. 25 (2007) 257–243.

DOI: 10.1016/j.ijrmhm.2006.05.006

Google Scholar

[9] M.G. Loshak, L.I. Alexandrova, Rise in the efficiency of the use of cemented carbides as a matrix of diamond-containing studs of rock destruction tool, Int. Journal of Refractory Metals & Hard Materials. 19 (2001) 5–9.

DOI: 10.1016/s0263-4368(00)00039-1

Google Scholar

[10] E. Breval, J.P. Cheng, D.K. Agrawal, P. Gigl, M. Dennis, R. Roy, A.J. Papworth, Comparison between microwave and conventional sintering of WC/Co composites, Materials Science and Engineering. A 391 (2005) 285–295.

DOI: 10.1016/j.msea.2004.08.085

Google Scholar

[11] V.A. Loktyushin, L.M. Gurevich, Poluchenie nanotolschinnykh metallicheskikh pokrytiy na sverkhtverdykh materialakh metodom termodiffuzionnoi metallizatsii, Izvestia VSTU. 11 (2009) 50–54.

Google Scholar

[12] Yu.V. Naidich, V.P. Umanskii, I.A. Lavrienko, Metal and alloy bond strengths to diamond, Industrial Diamond Review. 44 (1984) 327–331.

Google Scholar

[13] D.-P. Margaritis, Interfacial bonding in metal-matrix composites reinforced with metal-coated diamonds, PhD thesis, Nottingham, (2003).

Google Scholar

[14] I.P. Kushatlova, L.F. Stasyuk, D.P. Uskokovich, S.M. Radich, M.M. Ristich, Uprochnenie metallicheskoi matritsy karbidom titana, poluchennogo reaktsiei v sisteme almaz-titan-nikel, Glasnik hemijskog drushtva Beograd. Bulletin De La Societe Chimique Boegrad. 49 (1984) 555–561.

Google Scholar

[15] L.F. Stasyuk, I.P. Kushatlova, D.P. Uskokovich, I. Krstanovich, S.M. Radich, M.M. Ristich, Reaktsionnoe spekanie v sisteme almaz-karbid titana-khrom pod vysokim davleniem, Glasnik hemijskog drushtva Beograd. Bulletin de la societe chimique Beograd. 49 (1984) 563–569.

Google Scholar

[16] A.V. Nozhkina, Vliyanie metallov na fazovoe prevraschenie almaza v grafit, Journal of Superhard Materials. 3 (1988) 11–15.

Google Scholar

[17] W. Tillmann, M. Ferreira, A. Steffen, K. Rüster, J. Mŏller, S. Bieder, M. Paulus, M. Tolan, Carbon reactivity of binder metals in a diamond-metal composites – characterization by scanning electron microscopy and X-ray diffraction, Diamond & Related Materials. 38 (2013) 118-123.

DOI: 10.1016/j.diamond.2013.07.002

Google Scholar

[18] Y.H. Wang, J.B. Zang, M.Z. Wang, Y. Guan, Y.Z. Zheng, Properties and application of Ti-coated diamond grits, Journal of Materials Processing Technology. 129 (2002) 369–372.

DOI: 10.1016/s0924-0136(02)00661-1

Google Scholar

[19] S.S. Bukalov, L.A. Mikhalitsyn, Ya.V. Zubavichus, L.A. Leites, Yu.N. Novikov, Issledovanie stroenie grafitov I nekotorykh drugikh sp2 uglerodnykh materialov metodami mikrospektroskopii KR i rentgenovskoi difraktometrii, Rossiyskiy khimicheskiy jurnal. L (2006) 83–91.

Google Scholar

[20] M.N. Еgorova, A.N. Kapitonov, Issledovanie grafitovoi folgi, poluchennoi pressovaniem, Innovatsionnaya nauka. 6 (2006) 62–65.

Google Scholar

[21] A.Y. Efimov, M.A. Gorkavyy, A.I. Gorkavyy, D. B. Solovev, Improving the Efficiency of Automated Precision Robotics-Enabled Positioning and Welding. 2019 International Science and Technology Conference EastConf,, International Conference. (2019). [Online]. Available: http://dx.doi.org/10.1109/EastСonf.2019.8725362.

DOI: 10.1109/eastconf.2019.8725362

Google Scholar