First-Principles Study of Structural, Mechanical, and Thermodynamic Properties of Refractory Metals (Rh, Ir, W, Ta, Nb, Mo, Re, and Os)

Article Preview

Abstract:

The structural, mechanical, and thermodynamic properties of refractory metals Rh, Ir, W, Ta, Nb, Mo, Re, and Os have been systematically investigated by first-principles calculations based on density functional theory. Comparative studies reveal that Young's modulus (E = 636.42 GPa), shear modulus (G = 256.81 GPa), bulk modulus (B = 406.55 GPa), and microhardness (H = 44.69 GPa) of hexagonal Os are the highest, which reveals Os has the best overall mechanical properties. The body-centered cubic Nb has the smallest Young's modulus (E = 94.76 GPa), shear modulus (G = 33.62 GPa), bulk modulus (B = 174.50 GPa), and hardness (H = 2.04 GPa). Based on the ratio of bulk to shear modulus, it is judged that Rh, Ir, and Os are brittle materials (B/G < 1.75), and Nb, Ta, Mo, W, and Re exhibit ductile (B/G > 1.75). The elastic anisotropy has also been discussed by plotting both the 3D contours and the 2D planar projections of Young's modulus. For the face-centered cubic metals Rh and Ir and hexagonal close-packed metals Re and Os, the 3D contours of the Young's modulus are very similar, whereas body-centered cubic metals Ta, W, Nb, and Mo exhibit significant difference in elastic anisotropy. The thermodynamic calculations show that Debye temperature and minimum thermal conductivity decreases along Rh, Os, Mo, Ir, Re, W, Ta, Nb sequence. Furthermore, the results can be used as a general guidance for the design and development of high temperature refractory alloy system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1017-1030

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fathi Habashi, Historical Introduction to Refractory Metals. Mineral Processing and Extractive Metallurgy Review 22 (2001), 25-53.

DOI: 10.1080/08827509808962488

Google Scholar

[2] H. W. Yao, J. W. Qiao, J. A. Hawk, H. F. Zhou, M. W. Chen, M. C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds 696 (2017), 1139-1150.

DOI: 10.1016/j.jallcom.2016.11.188

Google Scholar

[3] Yi Wang, Ming Yan, Qiang Zhu, Williams Yi Wang, Yidong Wu, Xidong Hui, Richard Otis, Shun-Li Shang, Zi-Kui Liu, Long-Qing Chen, Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys. Acta Materialia 143 (2018), 88-101.

DOI: 10.1016/j.actamat.2017.10.017

Google Scholar

[4] Y. Wang, J. J. Wang, H. Zhang, V. R. Manga, S. L. Shang, L. Q. Chen, Z. K. Liu, A first-principles approach to finite temperature elastic constants. J Phys Condens Matter 22 (2010), 225404.

DOI: 10.1088/0953-8984/22/22/225404

Google Scholar

[5] FuZhi Dai, Yanchun Zhou, Wei Sun, Segregation of solute atoms (Y, Nb, Ta, Mo and W) in ZrB2 grain boundaries and their effects on grain boundary strengths: A first-principles investigation. Acta Materialia 127 (2017), 312-318.

DOI: 10.1016/j.actamat.2017.01.048

Google Scholar

[6] Michael C. Gao, Ömer N. Doğan, Paul King, Anthony D. Rollett, Michael Widom, The first-principles design of ductile refractory alloys. Jom 60 (2008), 61-65.

DOI: 10.1007/s11837-008-0092-1

Google Scholar

[7] M.H. YOO, J.R. MORRIS, K.M. HO, S.R. AGNEW, Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility. Metallurgical and materials transactions A 33 (2002), 813-822.

DOI: 10.1007/s11661-002-0150-1

Google Scholar

[8] Peter Gumbsch, Modelling brittle and semi-brittle fracture processes. Materials Science and Engineering: A 319 (2001), 1-7.

DOI: 10.1016/s0921-5093(01)01062-0

Google Scholar

[9] A. Fallahi, A. Ataee, Effects of crystal orientation on stress distribution near the triple junction in a tricrystal γ-TiAl. Materials Science and Engineering: A 527 (2010), 4576-4581.

DOI: 10.1016/j.msea.2010.03.040

Google Scholar

[10] Oleg Y Kontsevoi, Yuri N Gornostyrev, Arthur J Freeman, Modeling the dislocation properties and mechanical behavior of Ir, Rh, and their refractory alloys. JOM 57 (2005), 43-47.

DOI: 10.1007/s11837-005-0232-9

Google Scholar

[11] D. Roundy, C. R. Krenn, M. L. Cohen, J. W. Morris, The ideal strength of tungsten. Philosophical Magazine A 81 (2001), 1725-1747.

DOI: 10.1080/01418610108216634

Google Scholar

[12] Weidong Luo, D. Roundy, Marvin L. Cohen, J. W. Morris, Ideal strength of bcc molybdenum and niobium. Physical Review B 66 (2002).

DOI: 10.1103/physrevb.66.094110

Google Scholar

[13] Suhong Zhang, Xinyu Zhang, Yan Zhu, Na Sun, Jiaqian Qin, Riping Liu, Mechanical and electronic properties of Rh and Rh3Zr from first-principles calculation. Solid State Communications 189 (2014), 43-46.

DOI: 10.1016/j.ssc.2014.03.012

Google Scholar

[14] Per Söderlind, LH Yang, John A Moriarty, JM Wills, First-principles formation energies of monovacancies in bcc transition metals. Physical Review B 61 (2000), 2579.

DOI: 10.1103/physrevb.61.2579

Google Scholar

[15] Shumin Zheng, Shaoqing Wang, First-Principles Design of Refractory High Entropy Alloy VMoNbTaW. Entropy 20 (2018), 965.

DOI: 10.3390/e20120965

Google Scholar

[16] Jiang D.Y, Ouyang C.Y, Liu S.Q, Mechanical properties of W–Ti alloys from first-principles calculations. Fusion Engineering and Design 106 (2016), 34-39.

DOI: 10.1016/j.fusengdes.2016.03.028

Google Scholar

[17] Manish K. Niranjan, First principles study of structural, electronic and elastic properties of cubic and orthorhombic RhSi. Intermetallics 26 (2012), 150-156.

DOI: 10.1016/j.intermet.2012.03.049

Google Scholar

[18] B. S. Chen, C. Y. Zuo, C. Wang, X. Y. Guan, Y. Z. Li, Magnetic, Mechanical, and Electronic Properties of RhHx (x = 0, 0.25, 0.75, 1) from First-Principles Calculations. Journal of Superconductivity and Novel Magnetism 31 (2017), 799-803.

DOI: 10.1007/s10948-017-4253-8

Google Scholar

[19] U. F. Ozyar, E. Deligoz, K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds. Solid State Sciences 40 (2015), 92-100.

DOI: 10.1016/j.solidstatesciences.2015.01.001

Google Scholar

[20] C. Domain, R. Besson, A. Legris, Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties. Acta Materialia 50 (2002), 3513-3526.

DOI: 10.1016/s1359-6454(02)00173-8

Google Scholar

[21] Bing Wang, De Yu Wang, Yuan Xu Wang, A new hard phase of ReB4 predicted from first principles. Journal of Alloys and Compounds 573 (2013), 20-26.

DOI: 10.1016/j.jallcom.2013.03.181

Google Scholar

[22] Junyan Wu, Bo Zhang, Yongzhong Zhan, Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Computational Materials Science 131 (2017), 146-159.

DOI: 10.1016/j.commatsci.2017.01.047

Google Scholar

[23] Haiyan Yan, Meiguang Zhang, Qun Wei, Ping Guo, Theoretical study on tetragonal transition metal dinitrides from first principles calculations. Journal of Alloys and Compounds 581 (2013), 508-514.

DOI: 10.1016/j.jallcom.2013.07.157

Google Scholar

[24] S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (2009), 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[25] Romain Gaillac, Pluton Pullumbi, Francois Xavier Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of physics. Condensed matter : an Institute of Physics journal 28 (2016), 275201.

DOI: 10.1088/0953-8984/28/27/275201

Google Scholar

[26] Richard H. Taylor, Frisco Rose, Cormac Toher, Ohad Levy, Kesong Yang, Marco Buongiorno Nardelli, Stefano Curtarolo, A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Computational Materials Science 93 (2014), 178-192.

DOI: 10.1016/j.commatsci.2014.05.014

Google Scholar

[27] H.P Singh, Determination of thermal expansion of germanium, rhodium and iridium by X‐rays. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 24 (1968), 469-471.

DOI: 10.1107/s056773946800094x

Google Scholar

[28] S.S Lu, Y.L Chang, The accurate evaluation of lattice spacings from back-reflection powder photographs. Proceedings of the Physical Society 53 (1941), 517.

DOI: 10.1088/0959-5309/53/5/302

Google Scholar

[29] M.H. Mueller, The lattice parameter of tantalum. Scripta Metallurgica 11 (1977), 693-.

DOI: 10.1016/0036-9748(77)90141-7

Google Scholar

[30] H.Gijs Schimmel, Jacques Huot, Laurent C. Chapon, Frans D. Tichelaar, Fokko M. Mulder, Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. Journal of the American Chemical Society 127 (2005), 14348-14354.

DOI: 10.1021/ja051508a

Google Scholar

[31] Yi Chen, Jiang Shen, Nanxian Chen, The effect of Mo atoms in ternary nitrides with -type structure. Solid State Communications 149 (2009), 121-125.

DOI: 10.1016/j.ssc.2008.11.004

Google Scholar

[32] Chester T. Sims, Charles M. Craighead, Robert I. Jaffee, Physical and mechanical properties of rhenium. JOM 7 (1955), 168-179.

DOI: 10.1007/bf03377474

Google Scholar

[33] E.A. Owen, Llewelyn Pickup, I.O. Roberts, Lattice constants of five elements possessing hexagonal structure. Zeitschrift für Kristallographie-Crystalline Materials 91 (1935), 70-76.

DOI: 10.1524/zkri.1935.91.1.70

Google Scholar

[34] Lars Fast, J. M. Wills, Börje Johansson, O. Eriksson, Elastic constants of hexagonal transition metals: Theory. Physical Review B 51 (1995), 17431-17438.

DOI: 10.1103/physrevb.51.17431

Google Scholar

[35] Anne Marie Habraken, Laurent Duchêne, Anisotropic elasto-plastic finite element analysis using a stress–strain interpolation method based on a polycrystalline model. International Journal of Plasticity 20 (2004), 1525-1560.

DOI: 10.1016/j.ijplas.2003.11.006

Google Scholar

[36] Per Söderlind, Olle Eriksson, J. M. Wills, A. M. Boring, Theory of elastic constants of cubic transition metals and alloys. Physical Review B 48 (1993), 5844-5851.

DOI: 10.1103/physrevb.48.5844

Google Scholar

[37] M.A. Karolewski, Tight-binding potentials for sputtering simulations with fcc and bcc metals. Radiation Effects and Defects in Solids 153 (2001), 239-235.

DOI: 10.1080/10420150108211842

Google Scholar

[38] P. Villain, Ph Goudeau, P. O. Renault, K. F. Badawi, Size effect on intragranular elastic constants in thin tungsten films. Applied Physics Letters 81 (2002), 4365-4367.

DOI: 10.1063/1.1527229

Google Scholar

[39] F. H. Featherston, J. R. Neighbours, Elastic Constants of Tantalum, Tungsten, and Molybdenum. Physical Review 130 (1963), 1324-1333.

DOI: 10.1103/physrev.130.1324

Google Scholar

[40] D. I. Bolef, Elastic Constants of Single Crystals of the bcc Transition Elements V, Nb, and Ta. Journal of Applied Physics 32 (1961), 100-105.

DOI: 10.1063/1.1735933

Google Scholar

[41] L. Koči, Y. Ma, A. R. Oganov, P. Souvatzis, R. Ahuja, Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure. Physical Review B 77 (2008), 214101.

DOI: 10.1103/physrevb.77.214101

Google Scholar

[42] Jie Wang, JianYing Qi, Xian Zhou, Ideal strength and deformation-induced phase transformation of hcp metals Re, Ru, and Os: A first-principles study. Materials Science and Engineering: A 534 (2012), 353-364.

DOI: 10.1016/j.msea.2011.11.080

Google Scholar

[43] Kai Xiong, Haiming Lu, Jianfeng Gu, Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni 3 Al crystal. Computational Materials Science 115 (2016), 214-226.

DOI: 10.1016/j.commatsci.2015.12.045

Google Scholar

[44] J. Wang, S. Yip, S. R. Phillpot, D. Wolf, Crystal instabilities at finite strain. Phys Rev Lett 71 (1993), 4182-4185.

DOI: 10.1103/physrevlett.71.4182

Google Scholar

[45] S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z. K. Liu, First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Computational Materials Science 48 (2010), 813-826.

DOI: 10.1016/j.commatsci.2010.03.041

Google Scholar

[46] Xinyu Zhang, Lin Chen, Mingzhen Ma, Yan Zhu, Suhong Zhang, Riping Liu, Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure. Journal of Applied Physics 109 (2011), 113523.

DOI: 10.1063/1.3590707

Google Scholar

[47] Sami Kamran, Kuiying Chen, Liang Chen, Ab initioexamination of ductility features of fcc metals. Physical Review B 79 (2009).

Google Scholar

[48] Kai Xiong, Jianfeng Gu, Understanding pop-in phenomena in FeNi3 nanoindentation. Intermetallics 67 (2015), 111-120.

DOI: 10.1016/j.intermet.2015.08.007

Google Scholar

[49] H. M. Ledbetter, R. P. Reed, Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron‐Nickel Alloys. Journal of Physical and Chemical Reference Data 2 (1973), 531-618.

DOI: 10.1063/1.3253127

Google Scholar

[50] Yali Tian, Wei Zhou, Ping Wu, Effect of Ni and Pd Addition on Mechanical, Thermodynamic, and Electronic Properties of AuSn4-Based Intermetallics: A Density Functional Investigation. Journal of Electronic Materials 45 (2016), 4138-4147.

DOI: 10.1007/s11664-016-4592-4

Google Scholar

[51] SF Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954), 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[52] Robert Lowrie, AM Gonas, Single‐crystal elastic properties of tungsten from 24 to 1800 C. Journal of applied Physics 38 (1967), 4505-4509.

DOI: 10.1063/1.1709158

Google Scholar

[53] AS Darling, The elastic and plastic properties of the platinum metals. Platinum Metals Review 10 (1966), 14-19.

Google Scholar

[54] ML Shepard, JF Smith, Elastic Constants of Rhenium Single Crystals in the Temperature Range 4.2°–298° K. Journal of Applied Physics 36 (1965), 1447-1450.

DOI: 10.1063/1.1714327

Google Scholar

[55] C. Pantea, I. Stroe, H. Ledbetter, J. B. Betts, Y. Zhao, L. L. Daemen, H. Cynn, A. Migliori, Elastic constants of osmium between 5 and 300 K. Physical Review B 80 (2009).

DOI: 10.1103/physrevb.80.024112

Google Scholar

[56] RJ Farraro, Rex B McLellan, High temperature elastic properties of polycrystalline niobium, tantalum, and vanadium. Metallurgical Transactions A 10 (1979), 1699-1702.

DOI: 10.1007/bf02811703

Google Scholar

[57] ES Fisher, DG Westlake, ST Ockers, Effects of hydrogen and oxygen on the elastic moduli of vanadium, niobium, and tantalum single crystals. Physica status solidi (a) 28 (1975), 591-602.

DOI: 10.1002/pssa.2210280225

Google Scholar

[58] D. Sturm, M. Heilmaier, J. H. Schneibel, P. Jéhanno, B. Skrotzki, H. Saage, The influence of silicon on the strength and fracture toughness of molybdenum. Materials Science and Engineering: A 463 (2007), 107-114.

DOI: 10.1016/j.msea.2006.07.153

Google Scholar

[59] JM Dickinson, PE Armstrong, Temperature dependence of the elastic constants of molybdenum. Journal of applied Physics 38 (1967), 602-606.

DOI: 10.1063/1.1709381

Google Scholar

[60] HsienChie Cheng, ChingFeng Yu, WenHwa Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. Journal of Alloys and Compounds 546 (2013), 286-295.

DOI: 10.1016/j.jallcom.2012.08.077

Google Scholar

[61] Shivakumar.I. Ranganathan, MartinOstoja Starzewski, Universal elastic anisotropy index. Physical review letters 101 (2008), 055504.

Google Scholar

[62] P. Ravindran, Lars Fast, P. A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. Journal of Applied Physics 84 (1998), 4891-4904.

DOI: 10.1063/1.368733

Google Scholar

[63] Orson L Anderson, A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids 24 (1963), 909-917.

DOI: 10.1016/0022-3697(63)90067-2

Google Scholar

[64] A. Fernández Guillermet, G. Grimvall, Homology of interatomic forces and Debye temperatures in transition metals. Physical Review B 40 (1989), 1521-1527.

DOI: 10.1103/physrevb.40.1521

Google Scholar

[65] Kittel Charles, R. W. Hellwarth, Introduction to Solid State Physics. Physics Today 10 (1957), 43-44.

DOI: 10.1063/1.3060399

Google Scholar

[66] David R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology 163 (2003), 67-74.

DOI: 10.1016/s0257-8972(02)00593-5

Google Scholar

[67] Chen Lai, Jinshu Wang, Fan Zhou, Wei Liu, Naihua Miao, An experimental and first-principles investigation of noncentrosymmetric cubic Re3W. Journal of Alloys and Compounds 728 (2017), 984-991.

DOI: 10.1016/j.jallcom.2017.08.193

Google Scholar

[68] Joseph Callaway, Model for Lattice Thermal Conductivity at Low Temperatures. Physical Review 113 (1959), 1046-1051.

DOI: 10.1103/physrev.113.1046

Google Scholar