[1]
Iau J, Kulak M. A new paradigm in the design of aluminium alloys for aerospace applications. Materials Science Forum, 2000, 331-337: 127-140.
DOI: 10.4028/www.scientific.net/msf.331-337.127
Google Scholar
[2]
Davidal Ray M H. Aluminum alloy development efforts for compression dominated structure of aircraft. Light metal age, 1991, 2(9): 1l-15.
Google Scholar
[3]
Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in all A1-Cu-Mg-Ag alloy through underageing. Acta Materialia, 2002, 50: 3597-3608.
DOI: 10.1016/s1359-6454(02)00164-7
Google Scholar
[4]
Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metallurgical Transactions A, 1988, 19A (4): 1027-1035.
DOI: 10.1007/bf02628387
Google Scholar
[5]
Beffort O, Solenthaler C, Uggowitzer P J. High toughness and high strength spray-deposited AlCuMgAg-based alloys for use at moderately elevated temperatures. Materials Science and Engineering A, 1995, 191: 121-134.
DOI: 10.1016/0921-5093(94)09642-2
Google Scholar
[6]
Castillo L D, Lavemia E J. Microstructure and mechanical behavior of spray-deposited A1-Cu-Mg-Ag-Mn alloys. Metallurgical and Materials Transactions A, 2000, 31A: 2287-2298.
DOI: 10.1007/s11661-000-0145-8
Google Scholar
[7]
Chang C, Lee S, Hsu T. Impact of Cu/Mg ratio on thermal stability of hot extrusion of Al-4.6Cu-Mg-Ag alloys. Metallurgical and Materials Transactions A, 2007, 38A: 2832-2842.
DOI: 10.1007/s11661-007-9332-1
Google Scholar
[8]
Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. International Materials Reviews, 2005, 50(4): 193-215.
DOI: 10.1179/174328005x14357
Google Scholar
[9]
Ringer S P, Hono K, Polmear I J, Sakurai T. Nucleation of precipitates in aged A1-Cu-Mg-(Ag) alloys with high Cu: Mg ratios. Acta Materialia, 1996, 44(5): 1883-1898.
DOI: 10.1016/1359-6454(95)00314-2
Google Scholar
[10]
Auld J H. Structure of metastable precipitate in some Al-Cu-Mg-Ag alloys. Materials Science and Technology, 1986, 2(6): 784-787.
DOI: 10.1179/mst.1986.2.8.784
Google Scholar
[11]
Keny S, Scott V. Structure and orientation relationship of precipitates formed in A1-Cu-Mg-Ag alloys. Metal Science, 1984, l8(6): 289-294.
DOI: 10.1179/030634584790420069
Google Scholar
[12]
Knowles KM, Stobbs WM. The structure of (l 1 1) age-hardening precipitates in Al-Cu-Mg-Ag alloys. Acta Crystallographica B, 1988, 44(2): 207-227.
DOI: 10.1107/s0108768187012308
Google Scholar
[13]
Garg A, Howe J M. Convergent-beam electron diffraction analysis of the Q phase in Al-4.0Cu-0.5Mg-0.5Ag alloy. Acta Metallurgica et Materialia, 1991, 39(8): 1939-1946.
DOI: 10.1016/0956-7151(91)90162-t
Google Scholar
[14]
Taylor J A, Parker B A, Polmear I J. Precipitation in Al-Cu-Mg-Ag casting alloy. Metal Science, 1978, 12(10): 478-482.
DOI: 10.1179/030634578790433341
Google Scholar
[15]
Hono K, Sano N, Babu S S. Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys. Acta Metallurgica et Matefialia, 1993, 41(3): 829-838.
DOI: 10.1016/0956-7151(93)90016-l
Google Scholar
[16]
Hutchinson C R, Fan X, Pennycook S J and Shiflet G J. On the origin of the high coarsening resistance of plates in Al-Cu-Mg-Ag alloys. Acta Materialia, 2001, 49: 2827-2841.
DOI: 10.1016/s1359-6454(01)00155-0
Google Scholar