Thermodynamic Calculation of the Liquidus Projections of the Al-Cu-Fe-Si and Al-Cu-Fe-Mg-Si Multicomponent Systems on Al-Rich Side

Article Preview

Abstract:

The thermodynamic calculations of Al–Cu–Fe–Si quaternary system and Al–Cu–Fe–Mg–Si quinary system were carried out using CALPHAD approach based on the Al–Cu–Fe–Mg–Si thermodynamic database. The liquidus surface projection of Al–Cu–Fe–Si quaternary system at the Al-rich corner was constructed, and then the solidification structures of four Al–Cu–Fe–Si alloys were analyzed by the Gulliver-Scheil solidification simulation. The calculated results were in good agreement with the previous experimental data. The liquidus surface projections of A1–Cu–Fe–Mg–Si quinary system at the region of Al-Cu, Al-Si and Al-Mg were constructed, respectively. The liquidus projection of the multicomponent aluminum alloy system at the Al-rich side was accurately drawn, which could accurately predict the primary phase in the solidification process of the alloy. This work has an important guiding significance for the design of the aluminum alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

984-995

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Sundman, B. Jansson, J. Andersson, The Thermo-Calc databank system, Calphad 9 (1985) 153-190.

DOI: 10.1016/0364-5916(85)90021-5

Google Scholar

[2] Y. Du, S. Liu, L. Zhang, H. Xu, D. Zhao, A. Wang, L. Zhou, An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the Al–Cu–Fe–Mg–Mn–Ni–Si–Zn system, Calphad 35 (2011) 427-445.

DOI: 10.1016/j.calphad.2011.06.007

Google Scholar

[3] E. Scheil, Bemerkungen zur Schichtkristallbildung, Z. Metallkd, 34 (1942) 70-72.

Google Scholar

[4] J. Zhao, K. Cheng, Y. Du, L. Zhang, Thermodynamic calculation of liquidus projection of multiple aluminum alloys, Mater. Sci. Forum, 913 (2018) 589-595.

DOI: 10.4028/www.scientific.net/msf.913.589

Google Scholar

[5] N. Saunders, I. Ansara, A.T. Dinsdale, M.H. Rand (Eds.), COST 507-Thermochemical Database for Light Metal Alloys, vol. 2, Office for Official Publications of the European Communities, Luxembourg (1998), pp.28-33.

Google Scholar

[6] Y. Du, J.C. Schuster, Z.K. Liu, R.X. Hu, P. Nash, W.H. Sun, W.W. Zhang, J. Wang, L.J. Zhang, C.Y. Tang, A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments, Intermetallics, 16 (2008) 554-570.

DOI: 10.1016/j.intermet.2008.01.003

Google Scholar

[7] P. Liang, H.-L. Su, P. Donnadieu, M.G. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J. Seifert, H.L. Lukas, F. Aldinger, Experimental investigation and thermodynamic calculation of the central part of the Mg-Al phase diagram, Z. Metallkd., 89 (1998) 536-540.

DOI: 10.1002/chin.199726013

Google Scholar

[8] J. Gröbner, H.L. Lukas, F. Aldinger, Thermodynamic calculation of the ternary system Al-Si-C, CALPHAD, 20 (1996) 247-254.

DOI: 10.1016/s0364-5916(96)00027-2

Google Scholar

[9] I. Ansara, A. Jansson, Trita-Mac-0533, Materials Research Center, The Royal Institute of Technology, Stockholm, Sweden, (1993).

Google Scholar

[10] C.A. Coughanowr, I. Ansara, R. Luoma, M. Hämälälnen, H.L. Lukas, Assessment of the Cu-Mg system, Z. Metallkd., 82 (1991) 574-581.

DOI: 10.1515/ijmr-1991-820711

Google Scholar

[11] X. Yan, Y.A. Chang, A thermodynamic analysis of the Cu-Si system, J. Alloys Compd., 308 (2000) 221-229.

Google Scholar

[12] J. Tibballs, Fe-Mg, COST 507: Thermochemical Database for Light Metal Alloys, Vol 2, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., Office for Official Publications of the European Communities, Luxembourg, 1998, pp.195-196.

Google Scholar

[13] J. Lacaze, B. Sundman, An assessment of the Fe-C-Si system, Metall. Trans. A, 22 (1991) 2211-2223.

Google Scholar

[14] D. Kevorkov, R. Schmid-Fetzer, Phase equilibria and thermodynamics of the Mg-Si-Li system and remodeling of the Mg-Si system, J. Phase Equilib., 25 (2004) 140-151.

DOI: 10.1361/15477030418569

Google Scholar

[15] H.L. Chen, Y. Du, H.H. Xu, W. Xiong, Experimental investigation and thermodynamic modeling of the ternary Al-Cu-Fe system, J. Mater. Res., 24 (2009) 3154-3164.

DOI: 10.1557/jmr.2009.0376

Google Scholar

[16] T. Buhler, S.G. Fries, P.J. Spencer, H.L. Lukas, A thermodynamic assessment of the Al-Cu-Mg ternary system, J. Phase Equilib., 19 (1998) 317-333.

DOI: 10.1361/105497198770342058

Google Scholar

[17] C.Y. He, Y. Du, H.-L. Chen, H. Xu, Experimental investigation and thermodynamic modeling of the Al-Cu-Si system, CALPHAD, 33 (2009) 200-210.

DOI: 10.1016/j.calphad.2008.07.015

Google Scholar

[18] S.H. Liu, Order-disorder phase transition, topology of phase diagrams and their applications during solidification of Al alloys,, Ph.D. thesis, Central South University, China, (2010).

Google Scholar

[19] H. Feufel, T. Godecke, H.L. Lukas, F. Sommer, Investigation of the Al-Mg-Si system by experiments and thermodynamic calculations, J. Alloys Compd., 247 (1997) 31-42.

DOI: 10.1016/s0925-8388(96)02655-2

Google Scholar

[20] J. Zhao, L. Zhang, Y. Du, H. Xu, J. Liang, B. Huang, Experimental investigation and thermodynamic reassessment of the Cu-Fe-Si system, Metall. Mat. Trans A, 40 (2009) 1811–1825.

DOI: 10.1007/s11661-009-9877-2

Google Scholar

[21] J. Zhao, J. Zhou, S. Liu, Y. Du, S. Tang, Y. Yang, Phase diagram determination and thermodynamic modeling of the Cu–Mg–Si system, J. Min. Metall. Sect. B-Metall., 52 (2016) 99-112.

DOI: 10.2298/jmmb150515009z

Google Scholar

[22] Y. Du, J. Zhao, C. Zhang, H. Chen, L. Zhang, Thermodynamic modeling of the Fe–Mg–Si system, J. Min. Metall. Sect. B-Metall., 43 (2007) 39-56.

DOI: 10.2298/jmmb0701039d

Google Scholar

[23] X. Pan, J.E. Morral, H.D. Brody, Predicting the Q-Phase in Al-Cu-Mg-Si alloys, J. Phase Equilib. Diffus., 31 (2010) 144–148.

DOI: 10.1007/s11669-009-9640-9

Google Scholar

[24] Y. Du, Y.A. Chang, S.H. Liu, B.Y. Huang, F.Y. Xie, Y. Yang, S.L. Chen, Thermodynamic description of the Al-Fe-Mg-Mn-Si system and investigation of microstructure and microsegregation during directional solidification of an Al-Fe-Mg-Mn-Si Alloy, Z. Metallkd., 96 (2005), 1351-1362.

DOI: 10.3139/146.101185

Google Scholar

[25] G. Phragmen, On the phases occurring in alloys of Al with Cu, Mg, Mn, Fe and Si, J. Inst. Met., 77 (1950) 489-552.

Google Scholar

[26] A.G.C. Gwyer, H.W.L. Phillips, L. Mann, The constitution of the alloys of aluminum with copper, silicon, and iron, J. Inst. Met., 40 (1928) 300-302.

Google Scholar

[27] H.W.L. Phillips, Annotated equilibrium diagrams of some aluminium alloys systems, The Institute of Metals, Monograph No. 25, London, (1959).

Google Scholar

[28] L.F. Mondolf, Aluminium alloys: structure and properties, Butterworths, London, (1976).

Google Scholar

[29] I.T. Gul'Din, V.F. Anosov, A.A. Arnol'D, Effect of copper on the refining of aluminum, Izvestiya Akademii Nauk SSSR, Metally, (1972) 72-76.

Google Scholar

[30] N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in Aluminum Alloys: Impurity and Alloying Element, London: Taylor and Francis, (2002).

DOI: 10.1201/9781482265019

Google Scholar

[31] E.H. John, Aluminum: Properties and Physical Metallurgy, Metals Park, OH: ASM International, (1984).

Google Scholar

[32] N.A. Belov, A.V. Koltsov, D.G. Eskin, The Al–Cu–Fe–Mg–Si phase diagram in the range of Al-Cu alloys, Mater. Sci. Forum, 396-402 (2002) 929-934.

DOI: 10.4028/www.scientific.net/msf.396-402.929

Google Scholar

[33] N. Belov, A.Y. Gusev, D.G. Eskin, Evaluation of five-component phase diagrams for the analysis of phase composition in Al-Si based alloys, Z Metallkd, 89 (1998) 618-622.

Google Scholar

[34] J.L. Murray, Al–Mg (Aluminum–Magnesium), in: ASM Handbook, Volume 3, Alloy Phase Diagrams, ASM International, (1992).

Google Scholar