Numerical Simulation of Ni-Cu Alloy Dendrite Growth with Boundary Heat Flux

Article Preview

Abstract:

Evolution of the dendrite growth and the distribution of concentration and temperature fields in a Ni-0.4083 at.% Cu alloy was simulated. The dendrite morphology was greatly affected by boundary conditions. The result shows that the solid/liquid interface of dendrite was most instable and grew most fast under extraction boundary condition. The re-calescence occurred under the extraction boundary condition and Zero-Neumann boundary condition, but not under the heating boundary condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

976-983

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front [J]. Acta Materialia, 2017, 122: 310-321.

DOI: 10.1016/j.actamat.2016.09.053

Google Scholar

[2] X. D. Wang, H. X. Zhang, W. Zhou, et al. A 3D phase-field model for simulating the crystal growth of semi-crystalline polymers [J]. International Journal of Heat and Mass Transfer, 2017, 115: 194-205.

DOI: 10.1016/j.ijheatmasstransfer.2017.08.016

Google Scholar

[3] T. Takaki, S. Sakane, M. Ohno, et al. Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study [J]. Acta Materialia, 2016, 118: 230-243.

DOI: 10.1016/j.actamat.2016.07.049

Google Scholar

[4] T. Takaki, M. Ohno, T. Shimokawabe, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal [J]. Acta Materialia, 2014, 81: 272-283.

DOI: 10.1016/j.actamat.2014.08.035

Google Scholar

[5] C. Qi, J. F. Li, B. Xu, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system [J]. Computational Materials Science, 2016, 125: 72-81.

DOI: 10.1016/j.commatsci.2016.08.031

Google Scholar

[6] D. Tourret, Y. Song, A.J. Clarke, et al. Grain growth competition during thin-sample directional solidification of dendrite microstructures: A phase-field study [J]. Acta Materialia, 2017, 122: 220-235.

DOI: 10.1016/j.actamat.2016.09.055

Google Scholar

[7] D. Tourret, A. Karma. Three-dimensional dendrite needle network model for alloy Solidification [J]. Acta Materialia, 2016, 120: 240-254.

DOI: 10.1016/j.actamat.2016.08.041

Google Scholar

[8] Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of annular electromagnetic stirring process on solidification microstructure of 7075 aluminum alloy [J]. Advanced Materials Research, 2013, 652: 2418-2426.

DOI: 10.4028/www.scientific.net/amr.652-654.2418

Google Scholar

[9] J. Wu, Z. P. Guo, C. Luo et al. Development of a parallel adaptive multi-grid algorithm for solving the multi-scale thermal-solute 3D phase-field problems [J]. Computational Materials Science, 2018, 142: 89-98.

DOI: 10.1016/j.commatsci.2017.09.045

Google Scholar

[10] D. Tourret, A. Karma. Growth competition of columnar dendrite grains: A phase-field study [J]. Acta Materialia, 2015, 82: 64-83.

DOI: 10.1016/j.actamat.2014.08.049

Google Scholar

[11] Mullis A M. A study of kinetically limited dendrite growth at high under-cooling using phase field techniques [J]. Acta Material, 2003, 51(7):(1959).

DOI: 10.1016/s1359-6454(02)00601-8

Google Scholar

[12] C. Yang, Q. Y. Xu, B. C. Liu, et al. A high precision extrapolation method in multiphase-field model for simulating dendrite growth [J]. Journal of Crystal Growth, 2018, 490: 25-34.

DOI: 10.1016/j.jcrysgro.2018.03.017

Google Scholar

[13] A. Choudhury, M. Kellner, B. Nestler, et al. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases [J]. Current Opinion in Solid State and Materials Science, 2015, 19(5): 287-300.

DOI: 10.1016/j.cossms.2015.03.003

Google Scholar

[14] H. Neumann-Heyme, K. Eckert, C. Beckermann, et al. General evolution equation for the specific interface area of dendrites during alloy solidification [J] Acta Materialia, 2017, 140: 87-96.

DOI: 10.1016/j.actamat.2017.08.021

Google Scholar

[15] L. Zhang, W. Zhou, P. H. Hu, et al. Micro-structural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasi-crystals phase treated by pulsed magnetic field [J]. Journal of Alloys and Compounds, 2016, 688: 868-874.

DOI: 10.1016/j.jallcom.2016.07.280

Google Scholar

[16] J. F. Wang, Q. J. Sun, H. Wang, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding [J]. Materials Science & Engineering A, 2016, 676: 395-405.

DOI: 10.1016/j.msea.2016.09.015

Google Scholar

[17] M. Yang, S. M. Xiong, Z. Guo, et al. Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys [J]. Acta Materialia, 2016, 112: 261-272.

DOI: 10.1016/j.actamat.2016.04.014

Google Scholar

[18] X. H. Wu, G. Wang, L. Z. Zhao, D. C. Zeng, et al. Phase field simulation of dendrite growth in binary Ni–Cu alloy under the applied temperature gradient [J]. Computational Materials Science, 2016, 117: 286-293.

DOI: 10.1016/j.commatsci.2016.02.005

Google Scholar