[1]
G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front [J]. Acta Materialia, 2017, 122: 310-321.
DOI: 10.1016/j.actamat.2016.09.053
Google Scholar
[2]
X. D. Wang, H. X. Zhang, W. Zhou, et al. A 3D phase-field model for simulating the crystal growth of semi-crystalline polymers [J]. International Journal of Heat and Mass Transfer, 2017, 115: 194-205.
DOI: 10.1016/j.ijheatmasstransfer.2017.08.016
Google Scholar
[3]
T. Takaki, S. Sakane, M. Ohno, et al. Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study [J]. Acta Materialia, 2016, 118: 230-243.
DOI: 10.1016/j.actamat.2016.07.049
Google Scholar
[4]
T. Takaki, M. Ohno, T. Shimokawabe, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal [J]. Acta Materialia, 2014, 81: 272-283.
DOI: 10.1016/j.actamat.2014.08.035
Google Scholar
[5]
C. Qi, J. F. Li, B. Xu, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system [J]. Computational Materials Science, 2016, 125: 72-81.
DOI: 10.1016/j.commatsci.2016.08.031
Google Scholar
[6]
D. Tourret, Y. Song, A.J. Clarke, et al. Grain growth competition during thin-sample directional solidification of dendrite microstructures: A phase-field study [J]. Acta Materialia, 2017, 122: 220-235.
DOI: 10.1016/j.actamat.2016.09.055
Google Scholar
[7]
D. Tourret, A. Karma. Three-dimensional dendrite needle network model for alloy Solidification [J]. Acta Materialia, 2016, 120: 240-254.
DOI: 10.1016/j.actamat.2016.08.041
Google Scholar
[8]
Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of annular electromagnetic stirring process on solidification microstructure of 7075 aluminum alloy [J]. Advanced Materials Research, 2013, 652: 2418-2426.
DOI: 10.4028/www.scientific.net/amr.652-654.2418
Google Scholar
[9]
J. Wu, Z. P. Guo, C. Luo et al. Development of a parallel adaptive multi-grid algorithm for solving the multi-scale thermal-solute 3D phase-field problems [J]. Computational Materials Science, 2018, 142: 89-98.
DOI: 10.1016/j.commatsci.2017.09.045
Google Scholar
[10]
D. Tourret, A. Karma. Growth competition of columnar dendrite grains: A phase-field study [J]. Acta Materialia, 2015, 82: 64-83.
DOI: 10.1016/j.actamat.2014.08.049
Google Scholar
[11]
Mullis A M. A study of kinetically limited dendrite growth at high under-cooling using phase field techniques [J]. Acta Material, 2003, 51(7):(1959).
DOI: 10.1016/s1359-6454(02)00601-8
Google Scholar
[12]
C. Yang, Q. Y. Xu, B. C. Liu, et al. A high precision extrapolation method in multiphase-field model for simulating dendrite growth [J]. Journal of Crystal Growth, 2018, 490: 25-34.
DOI: 10.1016/j.jcrysgro.2018.03.017
Google Scholar
[13]
A. Choudhury, M. Kellner, B. Nestler, et al. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases [J]. Current Opinion in Solid State and Materials Science, 2015, 19(5): 287-300.
DOI: 10.1016/j.cossms.2015.03.003
Google Scholar
[14]
H. Neumann-Heyme, K. Eckert, C. Beckermann, et al. General evolution equation for the specific interface area of dendrites during alloy solidification [J] Acta Materialia, 2017, 140: 87-96.
DOI: 10.1016/j.actamat.2017.08.021
Google Scholar
[15]
L. Zhang, W. Zhou, P. H. Hu, et al. Micro-structural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasi-crystals phase treated by pulsed magnetic field [J]. Journal of Alloys and Compounds, 2016, 688: 868-874.
DOI: 10.1016/j.jallcom.2016.07.280
Google Scholar
[16]
J. F. Wang, Q. J. Sun, H. Wang, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding [J]. Materials Science & Engineering A, 2016, 676: 395-405.
DOI: 10.1016/j.msea.2016.09.015
Google Scholar
[17]
M. Yang, S. M. Xiong, Z. Guo, et al. Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys [J]. Acta Materialia, 2016, 112: 261-272.
DOI: 10.1016/j.actamat.2016.04.014
Google Scholar
[18]
X. H. Wu, G. Wang, L. Z. Zhao, D. C. Zeng, et al. Phase field simulation of dendrite growth in binary Ni–Cu alloy under the applied temperature gradient [J]. Computational Materials Science, 2016, 117: 286-293.
DOI: 10.1016/j.commatsci.2016.02.005
Google Scholar