Microscopic Properties of Point Defect and its Cluster in Delta-Phase Plutonium: A Molecular Dynamics Study

Article Preview

Abstract:

Self-irradiation effect induced by Pu α decay is an important influencing factor for long-term storage of Pu-based materials. In order to reveal the collision displacement cascade for uranium recoil nucleus induced by alpha decay in delta-phase plutonium at atomic level, we review the recent progress in self-irradiation of metallic plutonium and its alloys. We perform a molecular dynamics (MD) calculation on basis of modified embedded atom (MEAM) interatomic potentials, and obtain the minimum of displacement threshold energy (MDTE) for {1 1 1} lattice direction and microscopic evolution of He self-interstitial cluster. These findings are in agreement with previous experimental and theoretical results, and can be viewed as an essential input parameter for mesoscopic simulation to obtain the evolution of microscopic configuration at longer time and space, and might be also helpful for understanding the nucleation and growth mechanisms for vacancy and/or self-interstitial and its clusters, He-vacancy cluster and He bubbles in delta-phase plutonium and its alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

945-952

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. S. Hecker. Plutonium-an Element Never at Equilibrium [J]. Metallurgical and Materials Transactions, 2008, A 39: 1585-1592.

DOI: 10.1007/s11661-007-9373-5

Google Scholar

[2] N. Baclet, B. Oudot, R. Grynszpan, et al. Self-irradiation effects in plutonium alloys [J]. J. Alloys Compd., 2007, 444–445: 305–309.

DOI: 10.1016/j.jallcom.2006.10.156

Google Scholar

[3] W. G. Wolfer. Radiation Effects in Plutonium [J]. Los Alamos Sci, 2000, 26: 274-285.

Google Scholar

[4] S. S. Hecker, J. C. Martz. Aging of plutonium and its alloys [J]. Los Alamos Sci, 2000, 26: 238-243.

Google Scholar

[5] Ling M. Thermal cycling as a novel method to experimentally derive the equilibrium Pu-Ga phase diagram[J], Journal of Thermal Analysis and Calorimetry, 2017, 127: 345-353.

DOI: 10.1007/s10973-016-5678-1

Google Scholar

[6] M. Robinson, S. D. Kenny, R. Smith, et al. Simulating radiation damage in δ-plutonium [J]. Nucl. Instru. Meth. Phys. Res., 2009, B 267: 2967-2970.

Google Scholar

[7] S. M. Valone, M. I. Baskes, M. Stan, et al. Sickafus. Simulations of low energy cascades in fcc Pu metal at 300 K and constant volume [J]. J. Nucl. Mater., 2004, 324: 41–51.

DOI: 10.1016/j.jnucmat.2003.09.006

Google Scholar

[8] G. Jomard, L. Berlu, G. Rosa, et al. Computer simulation study of self irradiation in plutonium [J]. J. Alloys Compd., 2007, 444–445: 310–313.

DOI: 10.1016/j.jallcom.2006.10.157

Google Scholar

[9] P. Pochet. Modeling of aging in plutonium by molecular dynamics [J]. Nucl. Instru. Meth. Phys. Res., 2003, B 202: 82–87.

Google Scholar

[10] W. G. Wolfer, A. Kubota, P. Söderlind, et al. Density changes in Ga-stabilized δ-Pu, and what they mean [J]. J. Alloys Compd., 2007, 444–445: 72–79.

DOI: 10.1016/j.jallcom.2006.10.045

Google Scholar

[11] M. J. Caturla, N. Soneda, T. de la Rubia Diaz, et al. Kinetic Monte Carlo simulations applied to irradiated materials: The effect of cascade damage in defect nucleation and growth [J]. J. Nucl. Mater., 2006, 351: 78–87.

DOI: 10.1016/j.jnucmat.2006.02.019

Google Scholar

[12] B. W. Chung, S. R. Thompson, K. E. Lema, et al. Evolving density and static mechanical properties in plutonium from self-irradiation [J]. J. Nucl. Mater., 2009, 385: 91–94.

DOI: 10.1016/j.jnucmat.2008.09.031

Google Scholar

[13] S.I. Samarin, V.V. Dremov. A hybrid model of primary radiation damage in crystals [J]. J. Nucl. Mater., 2009, 385: 83–87.

DOI: 10.1016/j.jnucmat.2008.09.054

Google Scholar

[14] M. J. Fluss, B. D. Wirth, M. Wall, et al. Temperature-dependent defect properties from ion-irradiation in Pu(Ga) [J]. J. Alloys Compd., 2004, 368: 62–74.

DOI: 10.1016/j.jallcom.2003.08.080

Google Scholar

[15] L.F. Timofeeva. International Conference on Plutonium-Future–The Science: Topical Conference on Plutonium and Actinides[C], AIP Conference Transactions, 2000, p.11.

Google Scholar

[16] L. Berlu, G. Jomard, G. Rosa, et al. A plutonium α-decay defects production study through displacement cascade simulations with MEAM potential [J]. J. Nucl. Mater., 2008, 374: 344–353.

DOI: 10.1016/j.jnucmat.2007.09.012

Google Scholar

[17] S. M. Valone, M. I. Baskes, R. L. Martin. Atomistic model of helium bubbles in gallium-stabilized plutonium alloys [J]. Phys. Rev., 2006, B 73: 214209.

DOI: 10.1103/physrevb.73.214209

Google Scholar

[18] B. D. Wirth, A. J. Schwartz, M. J. Fluss, et al. Fundamental studies of plutonium aging [J]. MRS Bulletin , 2001, 679-683.

DOI: 10.1557/mrs2001.177

Google Scholar

[19] W. G. Wolfer, A. Kubota, P. Söderlind, et al. Density changes in Ga-stabilized δ-Pu, and what they mean [J]. J. Alloys Compd., 2007, 444–445: 72–79.

DOI: 10.1016/j.jallcom.2006.10.045

Google Scholar

[20] A. V. Karavaev, V. V. Dremov, G. V. Ionov. Equilibrium thermodynamics of radiation defect clusters in δ-phase Pu-Ga alloys [J], Journal of Nuclear Materials, 2016, 468: 46-55.

DOI: 10.1016/j.jnucmat.2015.11.015

Google Scholar

[21] D. W. Wheeler , S. M. Ennaceur, M. B. Matthews, et al. Structure and phase stability of a Pu-0.32 wt% Ga alloy [J], Journal of Nuclear Materials, 2016, 476: 205-212.

DOI: 10.1016/j.jnucmat.2016.04.027

Google Scholar

[22] W. D. Wilson, C. L. Bisson, M. I. Baskes. Self-trapping of helium in metals [J]. Phys. Rev., 1981, 24: 5616-5625.

DOI: 10.1103/physrevb.24.5616

Google Scholar

[23] B. Y. Ao, X. L. Wang, W. Y. Hu, et al. Atomistic study of small helium bubbles in plutonium [J]. J. Alloys Compd., 2007, 444–445: 300–304.

DOI: 10.1016/j.jallcom.2006.11.077

Google Scholar