[1]
K. Huang, K. Marthinsen, Q. Zhao, R.E. Logé, The double-edge effect of second-phase particles on the recrystallization behaviour and associsated mechanical properties of metallic materials, Prog. Mater. Sci. 92 (2018) 284-359.
DOI: 10.1016/j.pmatsci.2017.10.004
Google Scholar
[2]
C.S. Smith, Grains, phases and interfaces: an interpretation of microstructure, Trans. Metall. Soc. AIME. 175 (1948) 15-51.
Google Scholar
[3]
C. Tamoghna, M. Sukriti, Zener pinning through coherent precipitate: A phase-field study, Comput. Mater. Sci. 154 (2018) 84-90.
DOI: 10.1016/j.commatsci.2018.07.041
Google Scholar
[4]
J. Zhou, C. Li, M. Guan, F. Ren, X. Wang, S. Zhang, B. Zhao, Zener pinning by coherent particles: pinning efficiency and particle reorientation mechanisms, Modell. Simul. Mater. Sci. Eng. 25 (2017) 1-16.
DOI: 10.1088/1361-651x/aa6cfb
Google Scholar
[5]
M. Miodownik, Mesoscale simulations of particle pinning, Philos. Mag. A 79 (1999) 203-222.
Google Scholar
[6]
D. Weygand, Y. Bréchet, J. Lépinoux, Inhibition of grain growth by particle distribution: effect of spatial heterogeneities and of particle strength dispersion, Mater. Sci. Eng., A 292 (2000) 34-39.
DOI: 10.1016/s0921-5093(00)00990-4
Google Scholar
[7]
N. Moelans, B. Blanpain, P. Wollants, Phase-field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Mater. 53 (2005) 1771-1781.
DOI: 10.1016/j.actamat.2004.12.026
Google Scholar
[8]
I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng. 17 (2009) 1-30.
Google Scholar
[9]
L. Vanherpe, N. Moelans, B. Blanpain, S. Vandewalle, Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations, Comput. Mater. Sci. 49 (2010) 240-350.
DOI: 10.1016/j.commatsci.2010.05.020
Google Scholar
[10]
N. Wang, Y. Ji, Y. Wang, Y. Wen, L. Chen, Two modes of grain boundary pinning by coherent precipitates, Acta Mater. 135 (2017) 226-232.
DOI: 10.1016/j.actamat.2017.06.031
Google Scholar
[11]
N. Wang, Y. Wen, L. Q. Chen, Pinning of grain boundary migration by a coherent particle, Philos. Mag. Lett. 94 (2014) 794-802.
DOI: 10.1080/09500839.2014.978408
Google Scholar
[12]
L. Anand, M.E. Gurtin, B.D. Reddy, The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales, Int. J. Plast. 64 (2015) 1-25.
DOI: 10.1016/j.ijplas.2014.07.009
Google Scholar
[13]
D. Raabe, Physical Metallurgy, Elsevier ltd, Oxford, UK, (2014).
Google Scholar
[14]
D. Fan, L.Q. Chen, Computer simulation of grain growth using a continuum field model, Acta Mater. 45 (1997) 611-622.
DOI: 10.1016/s1359-6454(96)00200-5
Google Scholar
[15]
L.Q. Chen, W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B: Condens. Matter Mater. Phys. 50 (1994) 15752-15756.
DOI: 10.1103/physrevb.50.15752
Google Scholar
[16]
K. Kashihara, H. Konishi, T. Shibayanagi, Characteristics of strain-induced boundary migration as evaluated by the crystal rotation axis method in (001) [100] and (112) [111] aluminium bicrystal deformed by plane-strain compression, Mater. Trans. 51 (2010) 607-613.
DOI: 10.2320/matertrans.l-mg200952
Google Scholar
[17]
F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, third ed., Elsevier ltd, Oxford, UK, (2017).
Google Scholar
[18]
P.R. Rios, A theory for grain boundary pinning by particles, Acta Metall. 35 (1987) 2805-2814.
Google Scholar
[19]
G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu, Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe, J. Mater. Sci. Technol. 34 (2018) 25-30.
Google Scholar
[20]
M. Ramajayam, N. Stanford, Static recrystallization of steels produced by direct strip casting-the effect of carbon and vanadium concentration, Mater. Sci. Eng., A 671 (2016) 147-157.
DOI: 10.1016/j.msea.2016.06.032
Google Scholar