[1]
B.A. Hammel, The NIF ignition program: progress and planning, Plasma Phys Control Fusion, 48 (2006) 497506.
DOI: 10.1088/0741-3335/48/12b/s47
Google Scholar
[2]
G.C. Wang, Z.S. Yuan, Inertial Confinement Fusion, Anhui Education Press, Hefei, (1996).
Google Scholar
[3]
J. Lindle, The NIF project and recent advances in indirect drive ICF target physics. IAEA-CN-77/OV3/01.
Google Scholar
[4]
A. Neil, B. Wes, B. Chandu, et al, Inertial confinement fusion target component fabrication and technology development support: GA-A24174, General Atomics, California, (2002).
Google Scholar
[5]
A.K. Suri, C. Subramanian, J.K. Sonber, et al, Synthesis and consolidation of boron carbide: a review, Int. Mater. Rev. 55 (2010) 4-40.
Google Scholar
[6]
Z.F. Chen, Y.C. Su, Y.B. Cheng, Formation and sintering mechanisms of reaction bonded silicon carbide-boron carbide composites. Key Eng. Mater. 352 (2007) 207-212.
DOI: 10.4028/www.scientific.net/kem.352.207
Google Scholar
[7]
A.Q. You, W.Z. Xian, Z.X. Pan, Chemical stability and wet dissolution of boron carbides, Metallurgical Analysis, 4 (1998) 50-52.
Google Scholar
[8]
P. Chaudhari, A. Singh, A. Topkar, et al, Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter, Nucl. Instrum. Methods Phys. Res. 779 (2015) 33-38.
DOI: 10.1016/j.nima.2015.01.043
Google Scholar
[9]
H. Zhang, Preparation of cross sections of thermal spray coatings for TEM investigation, Journal of Thermal Spray Technology 1 (1992) 83-88.
DOI: 10.1007/bf02657022
Google Scholar
[10]
H. Zhang, T.Q. Chang, The Physics Foundation of Laser Fusion Target, National Defense Industry Press, Beijing, (2004).
Google Scholar
[11]
S. Yajima, K. Okamura, J. Hayashi, et al, Synthesis of continuous SiC fibers with high tensile strength, J. Am. Ceram., Soc. 59 (1976) 324-327.
DOI: 10.1111/j.1151-2916.1976.tb10975.x
Google Scholar
[12]
R.W. Rice, Ceramics from polymer pyrolysis, opportunities and needs-a materials perspective, Am. Ceram. Soc. Bull. 62 (1983) 889−892.
Google Scholar
[13]
M. Birot, J.P. Pillot, J. Dunogues, Comprehensive chemistry of polycarbosilane, polysilazane and polycarbosilazane as precursors of ceramic, Chem. Rev. 95 (1995) 1443−1477.
DOI: 10.1021/cr00037a014
Google Scholar
[14]
W.C. Ewing, P.J. Carroll, L.G. Sneddon, Ruthenium-Catalyzed Metathesis Reactions of ortho- and meta-Dialkenyl-Carboranes: Efficient Ring-Closing and Acyclic Diene Polymerization Reactions, Inorg. Chem., 49 (2010) 6139-6147.
DOI: 10.1021/ic100801y
Google Scholar
[15]
S.P. Kelley, G.P. Rachiero, H.M. Titi, et al. New Reactions for Old Ions: Cage Rearrangements, Hydrolysis, and Two-Electron Reduction of nido-Decaborane in Neat 1‑Ethyl-3- Methylimidazolium Acetate[J]. ACS. Omega. 3(2018) 8491−8496.
DOI: 10.1021/acsomega.8b00775
Google Scholar
[16]
W.Y. Chang, K. Upal, G. Larry. L.G. Sneddon, Computational Studies of the Reactions of B10H13- with Alkynes and Olefins: Pathways for Dehydrogenative Alkyne-Insertion and Olefin-Hydroboration Reactions. Inorg. Chem. 47 (2008) 9216-9227.
DOI: 10.1021/ic8010019
Google Scholar
[17]
C. Shahana, J.C. Patrick, L.G. Sneddon, Iridium and Ruthenium Catalyzed Syntheses, Hydroborations, and Metathesis Reactions of Alkenyl-Decaboranes, Inorg. Chem. 52 (2013) 9119−9130.
DOI: 10.1021/ic401356u
Google Scholar
[18]
S. Muhammad. Quantum chemical design of triple hybrid organic, inorganic and organometallic materials: An efficient two-dimensional second-order nonlinear optical material. Mater. Chem. Phys. 220 (2018) 286-292.
DOI: 10.1016/j.matchemphys.2018.09.009
Google Scholar
[19]
M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, et al. AM1: a new general purpose quantum mechanical molecular model[J]. J. Am. Chem. Soc. 107(1985) 3902-3909.
DOI: 10.1021/ja00299a024
Google Scholar
[20]
J.J.P. Stewart. Optimization of parameters for semiempirical methods II. Applications [J]. J. Comput. Chem. 10(1989) 221-264.
Google Scholar
[21]
K. Upal, J.C. Patrick, L.G. Sneddon, Ionic-Liquid-Promoted Decaborane Olefin-Hydroboration: A New Efficient Route to 6-R-B10H13 Derivatives, Inorg. Chem. 47 (2008) 9203-9215.
DOI: 10.1021/ic801000c
Google Scholar
[22]
X.L. Wei, P.J. Carroll, L.G. Sneddon, Ruthenium-Catalyzed Ring-Opening Polymerization Syntheses of Poly(organodecaboranes): New Single-Source Boron-Carbide Precursors, Chem. Mater. 18 (2006) 1113-1123.
DOI: 10.1021/cm0524603
Google Scholar
[23]
V. Dragutan, A.T. Balaban, M. Dimonie, Eds. Olefin Metathesis and Ring Opening Polymerization of Cycloolefins, Wiley: Chichester, U.K. (1985).
DOI: 10.1002/ange.19870990232
Google Scholar
[24]
K.J. Ivin, I.C. Mol, Olefin Metathesis and Metathesis Polymerization, 2nd ed, Academic: New York, (1986).
Google Scholar
[25]
V. Dragutan, R. Streck, Eds, Catalytic Polymerization of Cycloolefins: Ionic, Ziegler-Natta and Ring-Opening Metathesis Polymerization, Elsevier: New York, (2000).
DOI: 10.1016/s0167-2991(00)80307-9
Google Scholar