Deposition of SiO2/SiC Coating on Carbon Fiber to Enhance the Oxidation Resistance

Article Preview

Abstract:

The objective of the present investigation is to study the oxidation resistance of SiO2/SiC coating on carbon fiber by electrolytic plasma spraying. The SiO2/SiC coating can be easily prepared within several tens seconds through this approach. The effect of spraying parameters (fixed point 5s and spray 5 times at the speed of 20mm/s) on the microstructure and oxidation resistance properties of coatings was discussed in this paper. Scanning electronmicroscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and DTG have been used to characterize the SiO2/SiC coatings. It was demonstrated that fixed-point spray 5s has better density and oxidation resistance coating, and the oxidation resistance increased by 12% compared with spray 5 times at the speed of 20mm/s. The fixed-point spray 5s coating was mainly composed of SiO2 and SiC. The SiO2 relative content was 72.6% and the SiC relative content was 27.4%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-105

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Y. Wang, Q.G. Fu, B.Y. Tan, Effect of in-situ grown SiC nanowires on the mechanical properties of HfC-ZrB2-SiC modified C/C composites, J. Alloy. Comp. 726 (2017) 866-874.

DOI: 10.1016/j.jallcom.2017.08.060

Google Scholar

[2] B. Du, C.Q. Hong, S.B. Zhou, C. Liu, X.H. Zhang, Multi-composition coating for oxidation protection of modified carbon-bonded carbon fiber composites, J. Eur. Ceram. Soc. 36 (2016) 3303-3310.

DOI: 10.1016/j.jeurceramsoc.2016.05.028

Google Scholar

[3] T. Feng, H.J. Li, M.H. Hu, H.J. Lin, L. Li, Oxidation and ablation resistance of the ZrB2-CrSi2-Si/SiC coating for C/C composites at high temperature, J. Alloy.Comp. 662 (2016) 302-307.

DOI: 10.1016/j.jallcom.2015.12.011

Google Scholar

[4] E.L. Corral, R.E. Loehman, Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites, J. Am. Ceram. Soc. 91 (2008) 1495-1502.

DOI: 10.1111/j.1551-2916.2008.02331.x

Google Scholar

[5] Z.J. Dong, X.K. Li, G.M. Yuan, Y. Cong, N. Li, Z.Y. Jiang, Z.J. Hu, Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts, Thin Solid Films 517 (2009) 3248–3252.

DOI: 10.1016/j.tsf.2008.11.046

Google Scholar

[6] C. Vix-Guterl, I. Alix, P. Gibot, P. Ehrburger, Formation of tubular silicon carbide from a carbon–silica material by using a reactive replica technique: infra-red characterisation, Applied Surface Science 210 (2003) 329–337.

DOI: 10.1016/s0169-4332(03)00147-8

Google Scholar

[7] G. Hackl, H. Gerhard, N. Popovska, Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition, Thin Solid Films 513 (2006) 217–222.

DOI: 10.1016/j.tsf.2006.02.001

Google Scholar

[8] M. Das, A.K. Basu, S. Ghatak, A.G. Joshi, Carbothermal synthesis of boron nitride coating on PAN carbon fiber, Journal of the European Ceramic Society 29 (2009) 2129–2134.

DOI: 10.1016/j.jeurceramsoc.2008.12.004

Google Scholar

[9] D.F. Lii, J.L. Huang, L.J. Tsui, S.M. Lee, Formation of BN films on carbon fibers by dip-coating, Surf. Coat. Technol. 150 (2002) 269–276.

DOI: 10.1016/s0257-8972(01)01539-0

Google Scholar

[10] J.S. Li, C.R. Zhang, B. Li, Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition, Appl. Surf. Sci. 257 (2011) 7752–7757.

DOI: 10.1016/j.apsusc.2011.04.024

Google Scholar

[11] A. Liu, M. Guo, J. Gao, M. Zhao, Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide, Surf. Coat. Technol. 201 (2006) 2696–2700.

DOI: 10.1016/j.surfcoat.2006.05.012

Google Scholar

[12] R. Wang, D. Song, W. Liu, X. He, Effect of arc spraying power on the microstructure and mechanical properties of Zn–Al coating deposited onto carbon fiber reinforced epoxy composites, Appl. Surf. Sci. 257 (2010) 203–209.

DOI: 10.1016/j.apsusc.2010.06.065

Google Scholar

[13] D. Song, R. Wang, W. Liu, X. He, Microstructure and mechanical properties of PbSn alloys deposited on carbon fiber reinforced epoxy composites, J. Alloys Compd. 505 (2010) 348–351.

DOI: 10.1016/j.jallcom.2010.06.067

Google Scholar

[14] N. Guermazi, N. Haddar, K. Elleuch, H. Ayedi, Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures, Mater. Des. 56 (2014) 714–724.

DOI: 10.1016/j.matdes.2013.11.043

Google Scholar

[15] Y. Liang, Z. Wang, J. Zhang, K. Lu, Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn–Al coating on interstitial-free steel, Appl. Surf. Sci. 340 (2015) 89–95.

DOI: 10.1016/j.apsusc.2015.02.118

Google Scholar

[16] K.G. Schmitt-Thomas, Z.-G. Yang, R. Malke, Failure behavior and performance analysis of hybrid-fiber reinforced PAEK composites at high temperature, Compos. Sci. Technol. 58 (1998) 1509–1518.

DOI: 10.1016/s0266-3538(97)00179-6

Google Scholar

[17] D.W. Mckee, Oxidation behavior and protection of carbon/carbon composites,Carbon. 25 (1987) 551–557.

DOI: 10.1016/0008-6223(87)90197-7

Google Scholar

[18] T.L. Dhami, O.P. Bahl, B.R. Awasthy, Oxidation-resistant carbon-carboncomposites up to 1700-◦C, Carbon. 33 (1995) 479–490.

DOI: 10.1016/0008-6223(94)00173-w

Google Scholar

[19] J. Yin, X. Xiong, H.B. Zhang, B.Y. Huang, Microstructure and ablationperformance of dual-matrix carbon/carbon composite, Carbon. 44 (2006)1690–1694.

DOI: 10.1016/j.carbon.2006.01.017

Google Scholar

[20] S. Zhou, C. Wu, T. Zhang, Z. Zhang, Carbon nanotube- and Fep-reinforced copper–matrix composites by laser induction hybrid rapid cladding, Scr. Mater. 76 (2014) 25–28.

DOI: 10.1016/j.scriptamat.2013.12.006

Google Scholar

[21] S. Suárez, E. Ramos-Moore, B. Lechthaler, F. Mücklich, Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites, Carbon. 70 (2014) 173–178.

DOI: 10.1016/j.carbon.2013.12.089

Google Scholar

[22] K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, M. Naebe, Carbon fiber reinforced metal matrix composites: fabrication processes and properties, Compos. A: Appl. Sci. Manuf. 92 (2017) 70–96.

DOI: 10.1016/j.compositesa.2016.10.032

Google Scholar

[23] A.M. Bu, Y.P. Zhang, Y.F. Zhang, Y.H. Shen, W.W. Chen, H.W. Cheng, L. Wang, Microstructure, properties and formation mechanism of SiO2/SiC nano-coating onto carbon fiber by non-electrode plasma electrolysis, J. Alloy. Compd. 773 (2019) 346-351.

DOI: 10.1016/j.jallcom.2018.09.221

Google Scholar