[1]
Zhang W G, Cheng H M, Sano H, et al. The effects of nanoparticulate SiC upon the oxidation behavior of C-SiC-B4C composites[J]. Carbon, 1998, 36(11): 1591-1595.
DOI: 10.1016/s0008-6223(98)00128-6
Google Scholar
[2]
Kim H W, Koh Y H, Kim H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid[J]. Journal of the American Ceramic Society, 2000, 83(11): 2863-2865.
DOI: 10.1111/j.1151-2916.2000.tb01647.x
Google Scholar
[3]
Kulikovsky V, Vorlicek V, Bohac P, et al. Mechanical properties and structure of amorphous and crystalline B4C films[J]. Diamond and Related Materials, 2009, 18(1): 27-33.
DOI: 10.1016/j.diamond.2008.07.021
Google Scholar
[4]
Roy T K, Subramanian C, Suri A K. Pressureless sintering of boron carbide[J]. Ceramics International, 2006, 32(3): 227-233.
DOI: 10.1016/j.ceramint.2005.02.008
Google Scholar
[5]
Yamada S, Hirao K,Yamauchi Y, Kanzaki S. High strength B4C-TiB2 composites fabricated by reaction hot-pressing[J]. Journal of the European Ceramic Society, 2003, 23(7): 1123-1130.
DOI: 10.1016/s0955-2219(02)00274-1
Google Scholar
[6]
Yamada S, Hirao K,Yamauchi Y, Kanzaki S. Mechanical and electrical Properties of B4C-CrB2 ceramics fabricated by liquid phase siniering[J]. Ceramic International, 2003, 29(3): 299-304.
DOI: 10.1016/s0272-8842(02)00120-7
Google Scholar
[7]
Gao X J, Cao J W, Cheng L F, et al. Effect of Carbon Contents on Mechanical Properties of B4C/SiC Prepared By Reaction Sintering[J]. Journal of Inorganic Materials, 2015, 30(1):102-106.
Google Scholar
[8]
Gao X J, Cheng L F, Cao J W, et al. Effect of carbon contents on microstructure of B4C/SiC composites[J]. Optoelectronics and advanced materials-rapid communications, 2015, 9(3-4): 482-487.
Google Scholar
[9]
Olowolafe J O, Solomon J S, Mitchel W, et al. Thermal and electrical properties of Au/B4C, Ni/B4C and Ta/Si contacts to silicon carbide[J]. Thin Solid Films, 2005, 479(l-2): 59-63.
DOI: 10.1016/j.tsf.2004.11.188
Google Scholar
[10]
Froumin N, Frage N, Aizenshtein M, et al. Ceramic-metal interaction and wetting phenomena in the B4C/Cu system[J]. Journal of the European Ceramic Society, 2003, 23(15): 2821-2828.
DOI: 10.1016/s0955-2219(03)00294-2
Google Scholar
[11]
da Rocha R M, de Melo F C L. Pressureless Sintering of B4C-SiC Composites for Armor Applications[C]. Ceramic Engineering and Science Proceedings. 2009, 30(5): 113.
DOI: 10.1002/9780470584330.ch11
Google Scholar
[12]
Uehara M, Shiraishi R, Nogami A, et al. SiC–B4C composites for synergistic enhancement of thermoelectric property[J]. Journal of the European Ceramic Society, 2004, 24(2): 409-412.
DOI: 10.1016/s0955-2219(03)00213-9
Google Scholar
[13]
Aroati S, Cafri M, Dilman H, et al. Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon[J]. Journal of the European Ceramic Society, 2011, 31(5): 841-845.
DOI: 10.1016/j.jeurceramsoc.2010.11.032
Google Scholar
[14]
Aghajanian M K, Morgan B N, Singh J R, et al. A new family of reaction bonded ceramics for armor applications [J]. Ceramic transactions, 2002, 134: 527-539.
Google Scholar
[15]
Hayun S, Dilman H, Dariel M P, et al. The effect of carbon source on the microstructure and the mechanical properties of reaction bonded boron carbide [J]. Advances in Sintering Science and Technology: Ceramic Transactions, 2010: 29-39.
DOI: 10.1002/9780470599730.ch4
Google Scholar
[16]
Han I S, Lee K S, Seo D W, et al. Improvement of mechanical properties in RBSC by boron carbide addition [J]. Journal of materials science letters, 2002, 21(9): 703-706.
Google Scholar
[17]
Cuiping Z, Hongqiang R, Xinyan Y, et al. Studies on the SiC/B4C Composite Fabricated by Reaction Bonded SiC [J]. Rare Metal Materials and Engineering, 2011, 40: 536-539.
Google Scholar
[18]
Follansbee P S, Metals Handbook[M], American Society for Metals, Materials Park, OH, 1985, 8: 198-217.
Google Scholar
[19]
Yamada S , Hirao K, Yamauchi Y, et al. Densification behavior and mechanical properties of pressureless sintered B4C-CrB2 ceramics[J]. Journal of Materials Science, 2002, 37(23): 5007–5012.
Google Scholar
[20]
Tomoko Sano, Matthew shaeffer, Lionel Vargas-Gonzalez, etal. High strain rate performance of pressureless sintered boron carbide [M]. Dynamic Behavior of Materials Volume 1, Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, 2014: 13-19.
DOI: 10.1007/978-3-319-00771-7_2
Google Scholar
[21]
Liangjun Li, Laifei Cheng, Shangwu Fan, Xiaoju Gao, etal. Fabrication and dynamic compressive response of laminated ZrO–Zr2CN/Si3N4 ceramics[J]. Ceramics International, 2015, http://dx.doi.org/10.1016.
DOI: 10.1016/j.ceramint.2015.03.067
Google Scholar
[22]
Zeming He, J. Ma, Hongzhi Wang, et al. Dynamic fracture behavior ceramics characterized by a spilit Hopkinson bar, Materials Letters, 2005, 59(8-9): 901-904.
DOI: 10.1016/j.matlet.2004.11.054
Google Scholar
[23]
Y. Li, K.Ramesh, E.Chin, Comparison of the plastic deformation and failure of A359/SiC and 6061-T6/Al2O3 metal matrix composites under dynamic tension, Mater. Sci. Eng, 2004, A371: 359–370.
DOI: 10.1016/j.msea.2004.01.008
Google Scholar
[24]
Z. H. Tan, B. J. Pang, D. T. Qin, et al. The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates, Mater. Sci. Eng, 2008, A489: 302–309.
DOI: 10.1016/j.msea.2007.12.021
Google Scholar