The Development of Alumina Forming Austenitic Alloy for Core Application in Advanced Nuclear Reactors

Article Preview

Abstract:

The development of materials for core components which can serve in high temperature corrosive environments for a long service time is crucial to realize high efficiency and high-burnup operation of advanced nuclear reactors. Alumina forming austenitic (AFA) alloy is a kind of promising materials with improved corrosion resistance as well as strength at elevated temperature. The progress on the composition design and characterization of AFA alloys are reviewed in this work for evaluation their potential applications in advanced nuclear reactors. AFA alloys without the addition of carbon have been fabricated. Microstructures were observed by SEM and TEM. Mechanical properties were measured at room temperature and high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-80

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Lo, C.H. Shek, J.K. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R. 65(2009) 39-104.

Google Scholar

[2] P. Hosemann, D. Frazer, M. Fratoni, A. Bolind, M.F. Ashby, Materials selection for nuclear applications: Challenges and opportunities. Scripta Materialia, 143(2018) 181-187.

DOI: 10.1016/j.scriptamat.2017.04.027

Google Scholar

[3] R. Viswanathan, J. Sarver, J.M. Tanzosh, Boiler materials for ultra-supercritical coal power plants - steam side oxidation, J. Mater. Eng. Perform., 15(2006). 255-274.

DOI: 10.1361/105994906x108756

Google Scholar

[4] S.L. Mannan, M.D. Mathew, T. Jayakumar, S.C. Chetal, Fast reactor technology for energy security: challenges for materials development, Journal of Solid Mechanics and Materials Engineering, 7 (2013) 473-485.

DOI: 10.1299/jmmp.7.473

Google Scholar

[5] A.F. Rowcliffe, S.J. Zinkle, J.F. Stubbins, D.J. Edwards, D.J. Alexander, Austenitic stainless steels and high strength copper alloys for fusion components, J. Nucl. Mater. 258-263 (1998) 183-192.

DOI: 10.1016/s0022-3115(98)00333-x

Google Scholar

[6] S.-W. Baek, E.J. Song, J.H. Kim, Y.H. Lee, K.S. Ryu, S.W. Kim, Hydrogen susceptibility of nano-sized oxide dispersed austenitic steel for fusion reactor, Fusion Eng. Des. 121 (2017) 105-110.

DOI: 10.1016/j.fusengdes.2017.06.027

Google Scholar

[7] Kim H, Jang H, Subramanian G O, Kim C W, Jang C H, Development of alumina-forming duplex stainless steels as accident tolerant fuel cladding materials for light water reactors, Journal of Nuclear Materials, 507 (2018) 1-14.

DOI: 10.1016/j.jnucmat.2018.04.027

Google Scholar

[8] M.P. Brady, I.G. Wright, B. Gleeson, Alloy design strategies for promoting protective oxide-scale formation, JOM, 52(2000) 16-21.

DOI: 10.1007/s11837-000-0109-x

Google Scholar

[9] Buckthorpe D. Introduction to Generation IV nuclear reactors, in Structural Materials for Generation IV Nuclear Reactors [M]. Elsevier, (2017).

DOI: 10.1016/b978-0-08-100906-2.00001-x

Google Scholar

[10] M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, and L. Wang, Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance, Mater. Sci. Eng. A, 590(2014) 101-115.

DOI: 10.1016/j.msea.2013.10.014

Google Scholar

[11] Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, E.A. Payzant, Creep-resistant, Al2O3-forming austenitic stainless steel, Sci., 316(2007) 433-436.

DOI: 10.1126/science.1137711

Google Scholar

[12] J. Ejenstam, P. Szakálos. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead, Journal of Nuclear Materials, 461(2015) 164-170.

DOI: 10.1016/j.jnucmat.2015.03.011

Google Scholar

[13] Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, B.A. Pint, Alumina-forming austenitic stainless steels strengthened by Laves Phase and MC carbide precipitates, Metall. Mater. Trans. A, 38A(2007). 2737-2746.

DOI: 10.1007/s11661-007-9319-y

Google Scholar

[14] Wuxin Zhao, Yuan Wu, Suihe Jiang, Hui Wang, Xiongjun Liu, Zhaoping Lv, Micro-alloying effects of Yttrium on Recrystallization Behavior of an Alumina-forming Austenitic Stainless Steel, Journal of Iron and steel research, international, 23(2016) 553-558.

DOI: 10.1016/s1006-706x(16)30087-5

Google Scholar

[15] Geneva Trotter, Garrett Rayner, Ian Baker, Paul R. Munroe, Accelerated precipitation in the AFA stainless steel Fee20Cr-30Ni-2Nb-5Al via cold working, Intermetallics 53(2014) 120-128.

DOI: 10.1016/j.intermet.2014.04.018

Google Scholar

[16] Min-Ho Jang, Joonoh Moon, Jun-Yun Kang, Heon-Young Ha, BaigGyu Choi, Tae-Ho Lee, Changhee Lee, Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels , Mater. Sci. Eng. A, 647(2015) 163-169.

DOI: 10.1016/j.msea.2015.09.018

Google Scholar

[17] Bingbing Zhao, Jifu Fan, Yize Liu, Lin Zhao, Xianping Dong, Feng Sun, Lanting Zhang, Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance, Scripta Materialia 109 (2015) 64-67.

DOI: 10.1016/j.scriptamat.2015.07.019

Google Scholar

[18] D.H. Wen, Z. Li, B.B. Jiang, Q. Wang, G.Q. Chen, R. Tang, R.Q. Zhang, C. Dong, Peter K. Liaw, Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels, Materials Characterization 144 (2018) 86-98.

DOI: 10.1016/j.matchar.2018.07.007

Google Scholar

[19] M. Wang, H.Y. Sun, M. Phaniraj, H.N. Han, J.S. Jang, Z.J. Zhou, Evolution of microstructure and tensile properties of Fe–18Ni–12Cr based AFA steel during aging at 700 oC, Mater. Sci. Eng. A, 672(2016) 23-31.

DOI: 10.1016/j.msea.2016.06.060

Google Scholar

[20] Wang M, Sun Y, Feng J, Zhang R, Tang R, Zhou Z, Microstructural evolution and mechanical properties of an Fe-18Ni-16Cr-4Al base alloy during aging at 950 °C, International Journal of Minerals Metallurgy and Materials. 23 (2016) 314-322.

DOI: 10.1007/s12613-016-1240-1

Google Scholar

[21] Joonoh Moon, Tae-Ho Lee, Yoon-Uk Heo, Young-Soo Han, Jun-Yun Kang, Heon-Young Ha Dong-Woo Suh, Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel, Materials Science & Engineering A 645 (2015) 72-81.

DOI: 10.1016/j.msea.2015.08.005

Google Scholar

[22] Ian Baker, Natalie Afonina, Zhangwei Wang, Margaret Wu, Preliminary creep testing of the alumina-forming austenitic stainless steel Fe-20Cr-30Ni-2Nb-5Al, Materials Science & Engineering A 718 (2018) 492-498.

DOI: 10.1016/j.msea.2018.01.090

Google Scholar

[23] M.P. Brady, K.A. Unocic, M.J. Lance, M.L. Santella, Y. Yamamoto, and L.R. Walker, Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor, Oxid. Met., 75(2011) 337-357。.

DOI: 10.1007/s11085-011-9237-7

Google Scholar

[24] M.P. Brady, Y. Yamamoto, M.L. Santella, L.R. Walker, Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels, Oxid. Met. 72 (2009) 311-333.

DOI: 10.1007/s11085-009-9161-2

Google Scholar

[25] B.A. Pint, Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys, J. Am. Ceram. Soc. 86 (2003) 686-695.

DOI: 10.1111/j.1151-2916.2003.tb03358.x

Google Scholar

[26] Sun S, Zhou Z, Zhang L, Tang R, Oxidation behavior and Stress Corrosion Cracking Susceptibility of Fe27Ni16Cr3.5Al based AFA Alloy in Supercritical Water, Mater. Res. Express 5 (2018) 066525.

DOI: 10.1088/2053-1591/aac989

Google Scholar

[27] Hao Shi, Adrian Jianu, Alfons Weisenburger, Chongchong Tang, Annette Heinzel, Renate Fetzer, Fabian Lang, Robert Stieglitz, Georg Müller, Corrosion resistance and microstructural stability of austenitic FeeCreAleNi model alloys exposed to oxygen-containing molten lead, Journal of Nuclear Materials 524 (2019) 177-190.

DOI: 10.1016/j.jnucmat.2019.06.043

Google Scholar