Physics of Thermoelastic Martensitic Transformation in High-Strength Single Crystals

Article Preview

Abstract:

The thermoelastic martensitic transformations, shape memory effect and superelasticity in high-strength single crystals of ferromagnetic FeNiCoAlX (X = Ta, Nb, Ti), CoNiGa, NiFeGaCo alloys and TiNi alloy in monophase and heterophase states with nanoscale dispersed particles are investigated. The dependences of the thermal and stress hysteresis, superelasticity temperature range, reversible transformation strain on the size of the dispersed particles, crystal orientation, stress state, level of applied stress and test temperature are obtained. The criteria of high-temperature superelasticity and the conditions for narrow thermal and stress hysteresis, large value of reversible transformation strain, which exceeds the theoretical lattice strain, are established. The thermodynamic description of the effect of particles on the stress-induced martenstic transformation in single crystals of new high-ferromagnetic alloys are elaborated.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] T. Zhu, J. Li, Ultra-strength materials, Progress in Materials Science. 55 (2010) 710-757.

Google Scholar

[2] J. Frenkel, The theory of the elastic limit and the solidity of crystal bodies, J. Z. Phys. 37 (1926) 572-609.

Google Scholar

[3] J.P. Hirth, J. Lothe, Theory of dislocations, New York, John Wiley, (1982).

Google Scholar

[4] Y.I. Chumlyakov, I.V. Kireeva, H. Sehitoglu, E.I. Litvinova, E.G. Zaharova, N.V. Luzginova, High-strength single crystals of austenitic stainless steels with nitrogen content: Mechanisms of deformation and fracture, Materials Science Forum. 318 (1999).

DOI: 10.4028/www.scientific.net/msf.318-320.395

Google Scholar

[5] Y.I. Chumlyakov, I.V. Kireeva, I. S Kalashnikov, E.I. Litvinova, Y.F. Ivanov, The orientational dependence of critical shear stresses in single crystals of high-strength austenitic steels, Doklady Physics. 42 (1997) 18-21.

Google Scholar

[6] I.V. Kireeva, Y.I. Chumlyakov, Effect of nitrogen and stacking-fault energy on twinning in.

Google Scholar

[111] single crystals of austenitic stainless steels, The Physics of Metals and Metallography. 108 (2009) 298-309.

Google Scholar

[7] Y.I. Chumlyakov, I.V. Kireeva, E.G. Zakharova, N.V. Luzginova, H. Sehitoglu, I. Karaman, Strain hardening and fracture of austenitic steel single crystals with high concentration of interstitial atoms, Russian Physics Journal. 45 (2002) 274-284.

DOI: 10.1023/a:1020344700610

Google Scholar

[8] I.V. Kireeva, Y.I. Chumlyakov, N.V. Luzginova, Slip and twinning in single crystals of austenitic stainless steels with nitrogen, The Physics of Metals and Metallography. 94 (2002) 508-519.

Google Scholar

[9] O.V. Ivanova, Y.I. Chumlyakov, S.P. Efimenko, Dislocation model of orientational dependence and asymmetry of critical shear stresses in single crystals of stainless steel strengthened with nitrogen, Izvestia Akademii Nauk SSSR. Metally. 2 (1998).

Google Scholar

[10] I.V. Kireeva, Y.I. Chumlyakov, Orientation dependence of the γ-ε martensitic transformation in single crystals of austenitic stainless steels with low stacking fault energy, The Physics of Metals and Metallography. 101 (2006) 186-203.

DOI: 10.1134/s0031918x0602013x

Google Scholar

[11] I.V. Kireeva, Y.I. Chumlyakov, The orientation dependence of γ-α' martensitic transformation in austenitic stainless steel single crystals with low stacking fault energy, Materials Science and Engineering. 481-482 (2008) 737-741.

DOI: 10.1016/j.msea.2006.12.204

Google Scholar

[12] I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, Deformation of single crystal Hadfield steel by twinning and slip, Acta Materialia. 48 (2000) 1345-1359.

DOI: 10.1016/s1359-6454(99)00383-3

Google Scholar

[13] Y.I. Chumlyakov, I.V. Kireeva, E.I. Litvinova, E.G. Zakharova, N.V. Luzginova, H. Sehitoglu, I. Karaman, Strain hardening in single crystals of Hadfield steel, The Physics of Metals and Metallography. 90 (2000) S1-S17.

DOI: 10.1134/1.1499189

Google Scholar

[14] Y.I. Chumlyakov, I.V. Kireeva, G. S Kapasova, E.I. Litvinova, Pseudoelasticity in high strengthening FCC single crystals, Materials Research Society Symposium - Proceedings. 459 (1997) 395-400.

DOI: 10.1557/proc-459-395

Google Scholar

[15] A.M. Li, Yu.I. Chumlyakov, A.D. Korotayev, Twinning in single crystals of Cu-Ti-Al alloys containing coherent particles, Physics of Metals and Metallography. 59 (1985) 158-165.

Google Scholar

[16] A.D. Korotayev, Yu.I. Chumlyakov, V. F. Esipenko, L.S. Bushney, Superelasticity effects in single crystals of Cu-15% Al-2% Co with non-coherent particles due to twinning, Physica status solidi (a). 82 (1984) 405-412.

DOI: 10.1002/pssa.2210820209

Google Scholar

[17] V.A. Kirillov, Yu.I. Chumlyakov, A.D. Korotayev, L.A. Aparova, Relation between twinning and brittle failure in single crystals of Fe-Cr-Co-Mo, The Physics of Metals and Metallography. 68 (1989) 133-138.

Google Scholar

[18] V.A. Kirillov, Yu.I. Chumlyakov, A.D. Korotayev, V. Kh. Dammer, Twinning and slip in Fe-Cr-Co-Mo single crystals, The Physics of Metals and Metallography. 67 (1989) 181-188.

Google Scholar

[19] M.H. Byrnes, M. Grujicic, W.S. Owen, Nitrogen strengthening of a stable austenitic stainless steel, Acta Met. 35 (1987) 1853-1862.

DOI: 10.1016/0001-6160(87)90131-3

Google Scholar

[20] E. Werner, Solid solution and grain size hardening of nitrogen – alloyed austenitic steels, Mater. Sci. Eng. A. 101 (1988) 93-98.

DOI: 10.1016/0025-5416(88)90796-3

Google Scholar

[21] Y. Tanaka, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science. 327 (2010) 1488-1490.

DOI: 10.1126/science.1183169

Google Scholar

[22] К. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, (1998).

Google Scholar

[23] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[24] H. Sehitoglu, C. Efstathiou, H.J. Maier, Y. Chumlyakov, Hysteresis and deformation mechanisms of transforming FeNiCoTi, Mechanics of Materials. 38 (2006) 538-550.

DOI: 10.1016/j.mechmat.2005.05.024

Google Scholar

[25] H. Sehitoglu, I. Karaman, X.Y. Zhang, Y. Chumlyakov, H.J. Maier, Deformation of FeNiCoTi shape memory single crystals, Scripta Materialia. 44 (2001) 779-784.

DOI: 10.1016/s1359-6462(00)00657-6

Google Scholar

[26] H. Sehitoglu, X.Y. Zhang, T. Kotil, D. Canadinc, Y. Chumlyakov, H.J. Maier, Shape memory behavior of FeNiCoTi single and polycrystals, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33 (2002) 3661-3672.

DOI: 10.1007/s11661-002-0240-0

Google Scholar

[27] M. Nishida, C.M. Wayman, A. Chiba, Electron microscopy studies of the martensitic transformation in aged Ti-51at%Ni shape memory alloy, Metallography. 21 (1988) 275-291.

DOI: 10.1016/0026-0800(88)90025-0

Google Scholar

[28] T. Waitz, The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys, Acta Materialia. 53 (2005) 2273-2283.

DOI: 10.1016/j.actamat.2005.01.033

Google Scholar

[29] E Hornbogen, The effect of variables on martensitic transformation temperatures, Acta Metallurgica. 33 (1985) 595-601.

DOI: 10.1016/0001-6160(85)90024-0

Google Scholar

[30] I.V. Kireeva, Z.V. Pobedennaya, Yu.I. Chumlyakov, E. Cesari, I. Karaman, Effect of orientation on the high-temperature superelastisity in Co49Ni21Ga30 single crystals, Technical Physics Letters. 35 (2009) 186-189.

DOI: 10.1134/s1063785009020266

Google Scholar

[31] Yu.I. Chumlyakov, I.V. Kireeva, E. Yu. Panchenko, E.E. Timofeeva, Z.V. Pobedennaya, S.V. Chusov, I. Karaman, H. Maier, E. Cesari, V.A. Kirillov. High-temperature superelastisity in CoNiGa, CoNiAl, NiFeGa and TiNi monocrystals, Russian Physics Journal. 51 (2008).

DOI: 10.1007/s11182-009-9143-5

Google Scholar

[32] A.D. Korotaev, Yu.I. Chumlyakov, V.F. Esipenko, L.S. Bushnev, Superelasticity effects in single crystals of Cu-15%Al-2%Co with non-coherent particles due to twinning, Physica Status Solidi (a) 82 (1984) 405-412.

DOI: 10.1002/pssa.2210820209

Google Scholar

[33] H.Y. Yasuda, M. Aoki, A. Takaoka, Y. Umakoshi, Pseudoelasticity in Fe3Ga single crystals, Scripta Mat. 53 (2005) 253-257.

DOI: 10.1016/j.scriptamat.2005.03.032

Google Scholar

[34] E. Hornbogen, N. Jost, Alloys of iron and reversibility of martensitic transformations, J. de Physique IV, colloque C4, supplement an Journal de Physique III. 1 (1991) 199-210.

DOI: 10.1051/jp4:1991430

Google Scholar

[35] A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy, Scripta Mat. 67 (2012) 475-478.

DOI: 10.1016/j.scriptamat.2012.06.006

Google Scholar

[36] J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy, Acta Mat. 60 (2012) 2186-2195.

DOI: 10.1016/j.actamat.2011.12.047

Google Scholar

[37] J. Ma, B.C. Hombuckle, I. Karaman, G.B. Thompson, Z.P. Luo, Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals, Acta Mat. 61 (2013) 3445-3455.

DOI: 10.1016/j.actamat.2013.02.036

Google Scholar

[38] P. Kroos, T. Niendorf, I. Karaman, Y.I. Chumlyakov, H.J. Maier, Cyclic deformation behavior of aged FeNiCoAlTa single crystals, Functional Materials Letters. 5 (2012) 1250045-1 – 1250045-1.

DOI: 10.1142/s1793604712500452

Google Scholar

[39] T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloy, Science. 333 (2011) 68-71.

DOI: 10.1126/science.1202232

Google Scholar

[40] T. Omory, S. Abe, Y. Tanaka, D.Y. Lee, K. Ishida, R. Kainuma, Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy, Scripta Mater. 69 (2013) 812-815.

DOI: 10.1016/j.scriptamat.2013.09.006

Google Scholar

[41] Y.I. Chumlyakov, I.V. Kireeva, I.V. Kretinina, K.S. Kaynih, O.A. Kuts, V.A. Kirillov, I. Karaman, H. Maier, The shape memory effect and superelasticity in.

DOI: 10.4028/www.scientific.net/amr.1013.15

Google Scholar

[1] single crystals of FeNiCoAlTa with γ-α' thermoelastic martensitic transformations, Russian Physics Journal. 56 (2013) 66-74.

Google Scholar

[42] V.V. Kokorin, L.P. Gun'ko, Tetragonality of lattice parameters of martensite and γ-α transformation in FeNiCoTi alloys, Metal Physics and the latest technology. 17 (1995) 30-35.

Google Scholar

[43] Y.I. Chumlyakov, I.V. Kireeva, A.D. Korotaev, E.I. Litvinova, Y.L. Zuev, Mechanisms of plastic deformation and fracture of single crystals hardening austenitic stainless steels with nitrogen, Russian Physics Journal. 39 (1996) 5-33.

DOI: 10.1007/bf02067642

Google Scholar

[44] E. Nembach, Particle strengthening of metals and alloys, John Wiley & Sons, Inc., (1997).

Google Scholar

[45] I.V. Kireeva, Yu.I. Chumlyakov, V.A. Kirillov, I. Karaman, E. Cesari, Orientation and temperature dependence of superelasticity caused by reversible γ-α¢ martensitic transformations in FeNiCoAlTa single crystals, Technical Physics Letters. 37 (2011).

DOI: 10.1134/s1063785011050221

Google Scholar

[46] Yu.I. Chumlyakov, I.V. Kireeva, E. Yu. Panchenko, V.B. Aksenov, V.A. Kirillov, A.V. Ovsyannikov, E.G. Zakharova, H. Sehitogly, Shape memory effect and superelasticity in Ti-Ni and Fe-Ni-Co-Ti single crystals, Russian Physics Journal. 46 (2003).

DOI: 10.1023/b:rupj.0000010978.45838.d7

Google Scholar

[47] E. Hornbogen, V. Mertinger, D. Wurzel, Microstructure and tensile properties of two binary NiTi-alloys, Scripta Mater. 44 (2001) 171-178.

DOI: 10.1016/s1359-6462(00)00543-1

Google Scholar

[48] Yu.I. Chumlyakov, S.P. Efimenko, I.V. Kireeva, E. Yu. Panchenko, H. Sehitoglu, K. Gall, L.H. Yahia, Effects of shape memory and superelasticity in aged TiNi single crystals, Doklady Physics. 46 (2001) 849-852.

DOI: 10.1134/1.1433527

Google Scholar

[49] N. S. Surikova, Yu. I. Chumlyakov, Mechanisms of Plastic Deformation of the Titanium Nickelide Single Crystals, Fiz. Met. Metalloved. 89 (2000) 98-107.

Google Scholar

[50] S. Miyazaki, S. Kimura, K. Otsuka, Y. Suzuki, The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta Metall. 18 (1984) 883-888.

DOI: 10.1016/0036-9748(84)90254-0

Google Scholar

[51] H. Sehitoglu, R. Hamilton, D. Canadinc, X.Y. Zhang, I. Karaman, Yu. Chumlyakov, H.J. Maier, Detwinning in NiTi alloys, Metall. and mat. trans. A. 34 (2003) 6-13.

DOI: 10.1007/s11661-003-0203-0

Google Scholar

[52] E. Yu. Panchenko, I.V. Kireeva, Yu.I. Chumlyakov, S.P. Efimenko, V.B. Aksenov, H. Sehitogly, Features of thermoelastic martensitic transformations in.

DOI: 10.1134/1.1545372

Google Scholar

[1] titanium-nickel single crystals, Doklady Physics. 48 (2003) 34-37.

Google Scholar

[53] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys , Journal de Physique. 43 (1982) C4-255-260.

DOI: 10.1051/jphyscol:1982434

Google Scholar

[54] Yu. I. Chumlyakov and I. V. Kireeva, Orientation Dependence of Shape-Memory Effects and Superelasticity in Ti–30% Ni–20% Cu Single Crystals, Physics of Metals and Metallography. 88 (1999) 308-320.

Google Scholar

[55] E. Y. Panchenko, Y. I. Chumlyakov, I. V. Kireeva, A. V. Ovsyannikov, H. Sehitoglu, I. Karaman, H.J. Maier, Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals, Physics of Metals and Metallography. 106 (2008).

DOI: 10.1134/s0031918x08120065

Google Scholar

[56] Yu. Chumlyakov, I. Kireeva, E. Panchenko, I. Karaman, H.J. Maier, E. Timofeeva, Shape memory effect and high-temperature superelasticity in high-strength single crystals, J. of Alloys and Compounds. 557 (2013) S393-S398.

DOI: 10.1016/j.jallcom.2012.02.003

Google Scholar

[57] A. M. Li, Y. I. Chumlyakov, A. D. Korotayev, Work hardening during multiple twinning in Cu-Ti-Al single crystals, Physics of Metals and Metallography. 62 (1986) 164-170.

Google Scholar

[58] D.L. Beke, L. Daróczi, C. Lexcellent , V. Mertinger, Determination of stress dependence of elastic and dissipative energy terms of martensitic phase transformations in a NiTi shape memory alloy, J. Phys. IV France. 115 (2004) 279-285.

DOI: 10.1051/jp4:2004115033

Google Scholar

[59] Y. I. Chumlyakov, V. F. Yesipenko, L. S. Bushnev, A. D. Korotayev, Relation between twinning and slip in single crystals of heterophase alloys with low stacking fault energy, Physics of Metals and Metallography. 56 (1983) 160-167.

Google Scholar

[60] A. D. Korotaev, Y. I. Chumlyakov, V. F. Esipenko, L. S. Bushnev, Superelasticity effects in single crystals of Cu-15%Al-2% Co with non-coherent particles due to twinning, Physica Status Solidi (A) Applied Research. 82 (1984) 405-412.

DOI: 10.1002/pssa.2210820209

Google Scholar

[61] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape- Memory alloys, Physics of Metals and Metallography. 112 (2011).

DOI: 10.1134/s0031918x11020244

Google Scholar

[62] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, I.B. Trubitsyna, On the lattice parameters of phases in binary TiNi shape memory alloys, Acta mater. 52 (2004) 4479-4492.

DOI: 10.1016/j.actamat.2004.06.007

Google Scholar

[63] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metal. Mater. 42 (1994) 475-487.

DOI: 10.1016/0956-7151(94)90502-9

Google Scholar

[64] S. Ii, K. Yamauchi, Y. Maruhashi, M. Nishida, Direct evidence of correlation between {201}B19' and {114}B2 deformation twins in TiNi shape memory alloys, Scripta Mater. 49 (2003) 723-727.

DOI: 10.1016/s1359-6462(03)00356-7

Google Scholar

[65] J.X. Zhang, M. Sato, A. Ishida, Deformation mechanism of martensite in Ti-rich Ti-Ni shape memory alloy thin films, Acta Materialia. 54 (2006) 1185-1198.

DOI: 10.1016/j.actamat.2005.10.046

Google Scholar

[66] J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelastisity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature, Physical Metallurgy and Materials Science. 39 (2008).

DOI: 10.1007/s11661-008-9543-0

Google Scholar

[67] E. Dogan, I. Karaman, Y.I. Chumlyakov, Z.P. Luo, Microstructure and martensitic transformation characterictics of CoNiGa high temperature shape memory alloys, Acta Mater. 59 (2011) 1168-1183.

DOI: 10.1016/j.actamat.2010.10.050

Google Scholar

[68] J. Dadda, H. J Maier., I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelasricity at elevated temperatures in.

Google Scholar

[1] oriented Co49Ni21Ga30 single crystals under compression, Scripta Mater. 55 (2006) 663-666.

DOI: 10.1016/j.scriptamat.2006.07.005

Google Scholar

[69] J. Liu, H. Xie, Y. Huo, H. Zheng, J. Li, Microstructure evolution in CoNiGa shape memory alloys, J. of Alloys and Compounds. 429 (2006) 145-157.

DOI: 10.1016/j.jallcom.2005.10.056

Google Scholar

[70] F.C. Lovey, V. Torra, Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structucal defects in Cu-Zn-Al, Prog. Mater. Sci. 44 (1999) 189 p.

DOI: 10.1016/s0079-6425(99)00004-3

Google Scholar

[71] I.V. Kireeva, J. Pons, C. Picornell, Yu.I. Chumlyakov, E. Cesari, I.V. Kretinina, Influence of γ¢ nanometric particles on martensitic transformation and twinning structure of L10 martensite in Co-Ni-Ga ferromagnetic shape memory single crystals, Intermetallics. 35 (2013).

DOI: 10.1016/j.intermet.2012.10.018

Google Scholar

[72] V.V. Kokorin, Martensitic transformation in non-uniform solid solutions, Nauk. Dumka, Kiev, (1987).

Google Scholar

[73] L.Q. Chen, D.Y. Li, Selective variant growth of coherent Ti3Ni4 precipitate in a TiNi alloy under applied stresses, Acta Mater. 45 (1997) 471-479.

DOI: 10.1016/s1359-6454(96)00207-8

Google Scholar

[74] L.Q. Chen, D.Y. Li, Morphological of coherent multi-variant Ti11Ni14 precipitates in a Ti-Ni alloys under an applied stresses – a computer simulation study, Acta Mater. 46 (1998) 639-649.

DOI: 10.1016/s1359-6454(97)00241-3

Google Scholar

[75] I.V. Kireeva, C. Picornell, J. Pons, I.V. Kretinina, Yu.I. Chumlyakov, E. Cesari, Effect of oriented γ¢ precipitates on shape memory effect and superelasticity in Co-Ni-Ga single crystals, Acta Mater. 68 (2014) 127-139.

DOI: 10.1016/j.actamat.2014.01.019

Google Scholar

[76] P. Wollants, J.R. Roos, L. Delaey, Thermally and stress-induced thermoelastic transformations in the reference frame of equilibrium thermodynamics, Prog. in Mater. Sci. 37 (1993) 227-288.

DOI: 10.1016/0079-6425(93)90005-6

Google Scholar

[77] R.J. Salzbrenner, M. Cohen, On the themodynamics of thermoelastic martensitic transformations, Acta Metallurgica. 27 (1979) 739-748.

DOI: 10.1016/0001-6160(79)90107-x

Google Scholar

[78] U.F. Kocks, A.S. Argon, M.F. Asby, Thermodinamics and Kinetics of Slip. In Progress in Materials Science, edited by B. Chalmers, J.W. Christian and T. B. Massalski, Pergamon Press, Oxford, (1975).

Google Scholar

[79] K. Niitsu, T. Omori, R. Kainuma, Stress-induced transformation behaviors at low temperatures in Ti-51. 8 Ni (at. %) shape memory alloy, J. Applied Phys. Letters. 102 (2013) 231915-1 -231915-4.

DOI: 10.1063/1.4809935

Google Scholar

[80] J. Pons, E. Cesari, C. Segu, F. Masdeu, Ferromagnetic shape memory alloys: alternatives to NiMnGa, Mater. Sci. Eng. A. 481 (2008) 57-65.

DOI: 10.1016/j.msea.2007.02.152

Google Scholar

[81] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett. 80 (2002) 1746-1748.

DOI: 10.1063/1.1458075

Google Scholar

[82] R.F. Hamilton, H. Sehitoglu, C. Efstathiou, H.J. Maier, Inter-martensitic transitions in NieFeeGa single crystals, Acta Mater. 55 (2007) 4867-4876.

DOI: 10.1016/j.actamat.2007.05.003

Google Scholar

[83] E. Panchenko, Y. Chumlyakov, H.J. Maier, E. Timofeeva, I. Karaman, Tension/compression asymmetry of functional properties in.

DOI: 10.1016/j.intermet.2010.09.009

Google Scholar

[1] oriented ferromagnetic NiFeGaCo single crystals, Intermetallics. 18 (2010) 2458-2463.

DOI: 10.1016/j.intermet.2010.09.009

Google Scholar

[84] E.E. Timofeeva, E.Y. Panchenko, Y.I. Chumlyakov, H. Maier, Development of thermoelastic martensitic transformations in ferromagnetic.

Google Scholar

[11] oriented NiFeGa single crystals in compression. 54 (2012) 1427-1430.

Google Scholar

[85] S. Kaufmann, U.K. Roßler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fahler, Adaptive Modulations of Martensites, Physical Review Letters. 104 (2010) 145702.

DOI: 10.1103/physrevlett.104.145702

Google Scholar

[86] A. G. Khachaturyan, S. M. Shapiro, S. Semenovskaya, Adaptive phase formation in martensitic transformation, Physical Review B. 43 (1991) 10832-10843.

DOI: 10.1103/physrevb.43.10832

Google Scholar

[87] Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida, Stress-strain characteristics in Ni-Ga-Fe Ferromagnetic Shape Memory Alloys, Appl. Phys. Lett. 84 (2004) 1275–1277.

DOI: 10.1063/1.1642277

Google Scholar

[88] Y.I. Chumlyakov, I.V. Kireeva, E.Y. Panchenko, V.A. Kirillov, E.E. Timofeeva, I.V. Kretinina, Y.N. Danil'son, I. Karaman, H. Maier, E. Cesari, Thermoelastic martensitic transformations in single crystals with disperse particles, Russian Physics Journal. 54 (2012).

DOI: 10.1007/s11182-011-9701-5

Google Scholar

[89] K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys, Acta Metallurgica. 24 (1976) 207-226.

DOI: 10.1016/0001-6160(76)90071-7

Google Scholar

[90] С. Efstathiou, H. Sehitoglu, J. Carroll, J. Lambros, H.J. Maier, Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa, Acta Materialia. 56 (2008) 3791-3799.

DOI: 10.1016/j.actamat.2008.04.033

Google Scholar

[91] Y. Liu, H. Yang, Strain dependence of the Clausius-Clapeyron relation for thermoelastic martensitic transformations in NiTi, Smart. Mater. Struct. 16 (2007) S22-S27.

DOI: 10.1088/0964-1726/16/1/s03

Google Scholar

[92] C. Segu, J. Pons, E. Cesari, J. Dutkiewicz Low-temperature behavior of NiFeGa shape memory alloys, Mater. Sci. Eng. A. 438-440 (2006) 923-926.

DOI: 10.1016/j.msea.2006.02.105

Google Scholar

[93] A.L. Roytburd, Ju. Slusker, Deformation through a coherent phase transformation, Scripta Metallurgica et Materialia. 32 (1995) 761-766.

DOI: 10.1016/0956-716x(95)91599-k

Google Scholar

[94] A.L. Roytburd, Ju. Slusker, Equilibrium two-phase microstructure at phase transformation in a constrained solid, Materials Science and Engineering A. 238 (1997) 23-31.

DOI: 10.1016/s0921-5093(97)00430-9

Google Scholar

[95] A.L. Roytburd, Intrinsic Hysteresis of Superelastic Deformation, Materials Science Forum. 327-328 (2000) 389-392.

DOI: 10.4028/www.scientific.net/msf.327-328.389

Google Scholar

[96] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys, Acta Materialia. 55 (2007) 4253-4269.

DOI: 10.1016/j.actamat.2007.03.025

Google Scholar

[97] E.Y. Panchenko, E.E. Timofeeva, L.P. Kazantseva, Y.I. Chumlyakov, H. Maier, The effect of heat treatment on mechanisms of martensitic transformations in ferromagnetic Ni49Fe18Ga27Co6 single crystals, Russian Physics Journal. 53 (2011) 1219-1222.

DOI: 10.1007/s11182-011-9552-0

Google Scholar

[98] T. Omori, N. Kamiya, Y. Sutou, K. Oikawa, R. Kainuma, K. Ishida, Phase transformations in Ni–Ga–Fe ferromagnetic shape memory alloys, Materials Science and Engineering A. 378 (2004) 403-408.

DOI: 10.1016/j.msea.2003.10.366

Google Scholar

[99] T. Omory, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloys, Science. 333 (2011) 68-70.

DOI: 10.1126/science.1202232

Google Scholar

[100] Y. Chumlyakov, E. Panchenko, I. Kireeva, I. Karaman, H. Sehitoglu, H.J. Maier, A. Tverdokhlebova and A. Ovsyannikov, Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals, Materials Science and Engineering A. 481-482 (2008).

DOI: 10.1016/j.msea.2007.02.146

Google Scholar

[101] M.V. Klassen-Nekludova. Mechanical Twinning of crystals. Moscow: Publisher of the Academy of Sciences of the USSR (1960) 262.

Google Scholar

[102] E. Goo, T. Duerig, K. Melton, R. Sinclair, Mechanical twinning in Ti50Ni47Fe3 and Ni49Ni51 alloys, Acta metall. 33 (1985) 1725-1733.

DOI: 10.1016/0001-6160(85)90167-1

Google Scholar

[103] B.A. Strukov, A.P. Levanyuk, Physical bases of the ferroelectric phenomena in crystals, Nauka publishing house, Moscow, 1983, 240 [in Russian].

Google Scholar

[104] Y.I. Chumlyakov, E.Y. Panchenko, A.V. Ovsyannikov, S.A. Chusov, V.A. Kirillov, I. Karaman, H.J. Maier, High-temperature superelasticity and the shape-memory effect in.

DOI: 10.1134/s0031918x09020124

Google Scholar

[1] Co-Ni-Al single crystals, Physics of Metals and Metallography, 107 (2009) 194-205.

Google Scholar

[105] E. Yu. Panchenko, Yu.I. Chumlyakov, H. Maier, A.S. Kanafieva, 1 and V.A. Kirillov. The effect of ageing of the.

Google Scholar

[11] oriented Co35Ni35Al30 single crystals in free state and under loading on their functional properties, Russian Physics Journal. 55 (2013) 1123-1131.

DOI: 10.1007/s11182-013-9932-8

Google Scholar