p.3
p.20
p.38
p.77
p.107
p.174
p.207
p.232
p.245
Physics of Thermoelastic Martensitic Transformation in High-Strength Single Crystals
Abstract:
The thermoelastic martensitic transformations, shape memory effect and superelasticity in high-strength single crystals of ferromagnetic FeNiCoAlX (X = Ta, Nb, Ti), CoNiGa, NiFeGaCo alloys and TiNi alloy in monophase and heterophase states with nanoscale dispersed particles are investigated. The dependences of the thermal and stress hysteresis, superelasticity temperature range, reversible transformation strain on the size of the dispersed particles, crystal orientation, stress state, level of applied stress and test temperature are obtained. The criteria of high-temperature superelasticity and the conditions for narrow thermal and stress hysteresis, large value of reversible transformation strain, which exceeds the theoretical lattice strain, are established. The thermodynamic description of the effect of particles on the stress-induced martenstic transformation in single crystals of new high-ferromagnetic alloys are elaborated.
Info:
Periodical:
Pages:
107-173
Citation:
Online since:
March 2015
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] T. Zhu, J. Li, Ultra-strength materials, Progress in Materials Science. 55 (2010) 710-757.
[2] J. Frenkel, The theory of the elastic limit and the solidity of crystal bodies, J. Z. Phys. 37 (1926) 572-609.
[3] J.P. Hirth, J. Lothe, Theory of dislocations, New York, John Wiley, (1982).
[4] Y.I. Chumlyakov, I.V. Kireeva, H. Sehitoglu, E.I. Litvinova, E.G. Zaharova, N.V. Luzginova, High-strength single crystals of austenitic stainless steels with nitrogen content: Mechanisms of deformation and fracture, Materials Science Forum. 318 (1999).
[5] Y.I. Chumlyakov, I.V. Kireeva, I. S Kalashnikov, E.I. Litvinova, Y.F. Ivanov, The orientational dependence of critical shear stresses in single crystals of high-strength austenitic steels, Doklady Physics. 42 (1997) 18-21.
[6] I.V. Kireeva, Y.I. Chumlyakov, Effect of nitrogen and stacking-fault energy on twinning in.
[111] single crystals of austenitic stainless steels, The Physics of Metals and Metallography. 108 (2009) 298-309.
[7] Y.I. Chumlyakov, I.V. Kireeva, E.G. Zakharova, N.V. Luzginova, H. Sehitoglu, I. Karaman, Strain hardening and fracture of austenitic steel single crystals with high concentration of interstitial atoms, Russian Physics Journal. 45 (2002) 274-284.
[8] I.V. Kireeva, Y.I. Chumlyakov, N.V. Luzginova, Slip and twinning in single crystals of austenitic stainless steels with nitrogen, The Physics of Metals and Metallography. 94 (2002) 508-519.
[9] O.V. Ivanova, Y.I. Chumlyakov, S.P. Efimenko, Dislocation model of orientational dependence and asymmetry of critical shear stresses in single crystals of stainless steel strengthened with nitrogen, Izvestia Akademii Nauk SSSR. Metally. 2 (1998).
[10] I.V. Kireeva, Y.I. Chumlyakov, Orientation dependence of the γ-ε martensitic transformation in single crystals of austenitic stainless steels with low stacking fault energy, The Physics of Metals and Metallography. 101 (2006) 186-203.
[11] I.V. Kireeva, Y.I. Chumlyakov, The orientation dependence of γ-α' martensitic transformation in austenitic stainless steel single crystals with low stacking fault energy, Materials Science and Engineering. 481-482 (2008) 737-741.
[12] I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, Deformation of single crystal Hadfield steel by twinning and slip, Acta Materialia. 48 (2000) 1345-1359.
[13] Y.I. Chumlyakov, I.V. Kireeva, E.I. Litvinova, E.G. Zakharova, N.V. Luzginova, H. Sehitoglu, I. Karaman, Strain hardening in single crystals of Hadfield steel, The Physics of Metals and Metallography. 90 (2000) S1-S17.
DOI: 10.1134/1.1499189
[14] Y.I. Chumlyakov, I.V. Kireeva, G. S Kapasova, E.I. Litvinova, Pseudoelasticity in high strengthening FCC single crystals, Materials Research Society Symposium - Proceedings. 459 (1997) 395-400.
DOI: 10.1557/proc-459-395
[15] A.M. Li, Yu.I. Chumlyakov, A.D. Korotayev, Twinning in single crystals of Cu-Ti-Al alloys containing coherent particles, Physics of Metals and Metallography. 59 (1985) 158-165.
[16] A.D. Korotayev, Yu.I. Chumlyakov, V. F. Esipenko, L.S. Bushney, Superelasticity effects in single crystals of Cu-15% Al-2% Co with non-coherent particles due to twinning, Physica status solidi (a). 82 (1984) 405-412.
[17] V.A. Kirillov, Yu.I. Chumlyakov, A.D. Korotayev, L.A. Aparova, Relation between twinning and brittle failure in single crystals of Fe-Cr-Co-Mo, The Physics of Metals and Metallography. 68 (1989) 133-138.
[18] V.A. Kirillov, Yu.I. Chumlyakov, A.D. Korotayev, V. Kh. Dammer, Twinning and slip in Fe-Cr-Co-Mo single crystals, The Physics of Metals and Metallography. 67 (1989) 181-188.
[19] M.H. Byrnes, M. Grujicic, W.S. Owen, Nitrogen strengthening of a stable austenitic stainless steel, Acta Met. 35 (1987) 1853-1862.
[20] E. Werner, Solid solution and grain size hardening of nitrogen – alloyed austenitic steels, Mater. Sci. Eng. A. 101 (1988) 93-98.
[21] Y. Tanaka, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science. 327 (2010) 1488-1490.
[22] К. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, (1998).
[23] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.
[24] H. Sehitoglu, C. Efstathiou, H.J. Maier, Y. Chumlyakov, Hysteresis and deformation mechanisms of transforming FeNiCoTi, Mechanics of Materials. 38 (2006) 538-550.
[25] H. Sehitoglu, I. Karaman, X.Y. Zhang, Y. Chumlyakov, H.J. Maier, Deformation of FeNiCoTi shape memory single crystals, Scripta Materialia. 44 (2001) 779-784.
[26] H. Sehitoglu, X.Y. Zhang, T. Kotil, D. Canadinc, Y. Chumlyakov, H.J. Maier, Shape memory behavior of FeNiCoTi single and polycrystals, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33 (2002) 3661-3672.
[27] M. Nishida, C.M. Wayman, A. Chiba, Electron microscopy studies of the martensitic transformation in aged Ti-51at%Ni shape memory alloy, Metallography. 21 (1988) 275-291.
[28] T. Waitz, The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys, Acta Materialia. 53 (2005) 2273-2283.
[29] E Hornbogen, The effect of variables on martensitic transformation temperatures, Acta Metallurgica. 33 (1985) 595-601.
[30] I.V. Kireeva, Z.V. Pobedennaya, Yu.I. Chumlyakov, E. Cesari, I. Karaman, Effect of orientation on the high-temperature superelastisity in Co49Ni21Ga30 single crystals, Technical Physics Letters. 35 (2009) 186-189.
[31] Yu.I. Chumlyakov, I.V. Kireeva, E. Yu. Panchenko, E.E. Timofeeva, Z.V. Pobedennaya, S.V. Chusov, I. Karaman, H. Maier, E. Cesari, V.A. Kirillov. High-temperature superelastisity in CoNiGa, CoNiAl, NiFeGa and TiNi monocrystals, Russian Physics Journal. 51 (2008).
[32] A.D. Korotaev, Yu.I. Chumlyakov, V.F. Esipenko, L.S. Bushnev, Superelasticity effects in single crystals of Cu-15%Al-2%Co with non-coherent particles due to twinning, Physica Status Solidi (a) 82 (1984) 405-412.
[33] H.Y. Yasuda, M. Aoki, A. Takaoka, Y. Umakoshi, Pseudoelasticity in Fe3Ga single crystals, Scripta Mat. 53 (2005) 253-257.
[34] E. Hornbogen, N. Jost, Alloys of iron and reversibility of martensitic transformations, J. de Physique IV, colloque C4, supplement an Journal de Physique III. 1 (1991) 199-210.
DOI: 10.1051/jp4:1991430
[35] A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy, Scripta Mat. 67 (2012) 475-478.
[36] J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Shape memory behavior and tension–compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy, Acta Mat. 60 (2012) 2186-2195.
[37] J. Ma, B.C. Hombuckle, I. Karaman, G.B. Thompson, Z.P. Luo, Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals, Acta Mat. 61 (2013) 3445-3455.
[38] P. Kroos, T. Niendorf, I. Karaman, Y.I. Chumlyakov, H.J. Maier, Cyclic deformation behavior of aged FeNiCoAlTa single crystals, Functional Materials Letters. 5 (2012) 1250045-1 – 1250045-1.
[39] T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloy, Science. 333 (2011) 68-71.
[40] T. Omory, S. Abe, Y. Tanaka, D.Y. Lee, K. Ishida, R. Kainuma, Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy, Scripta Mater. 69 (2013) 812-815.
[41] Y.I. Chumlyakov, I.V. Kireeva, I.V. Kretinina, K.S. Kaynih, O.A. Kuts, V.A. Kirillov, I. Karaman, H. Maier, The shape memory effect and superelasticity in.
[1] single crystals of FeNiCoAlTa with γ-α' thermoelastic martensitic transformations, Russian Physics Journal. 56 (2013) 66-74.
[42] V.V. Kokorin, L.P. Gun'ko, Tetragonality of lattice parameters of martensite and γ-α transformation in FeNiCoTi alloys, Metal Physics and the latest technology. 17 (1995) 30-35.
[43] Y.I. Chumlyakov, I.V. Kireeva, A.D. Korotaev, E.I. Litvinova, Y.L. Zuev, Mechanisms of plastic deformation and fracture of single crystals hardening austenitic stainless steels with nitrogen, Russian Physics Journal. 39 (1996) 5-33.
DOI: 10.1007/bf02067642
[44] E. Nembach, Particle strengthening of metals and alloys, John Wiley & Sons, Inc., (1997).
[45] I.V. Kireeva, Yu.I. Chumlyakov, V.A. Kirillov, I. Karaman, E. Cesari, Orientation and temperature dependence of superelasticity caused by reversible γ-α¢ martensitic transformations in FeNiCoAlTa single crystals, Technical Physics Letters. 37 (2011).
[46] Yu.I. Chumlyakov, I.V. Kireeva, E. Yu. Panchenko, V.B. Aksenov, V.A. Kirillov, A.V. Ovsyannikov, E.G. Zakharova, H. Sehitogly, Shape memory effect and superelasticity in Ti-Ni and Fe-Ni-Co-Ti single crystals, Russian Physics Journal. 46 (2003).
[47] E. Hornbogen, V. Mertinger, D. Wurzel, Microstructure and tensile properties of two binary NiTi-alloys, Scripta Mater. 44 (2001) 171-178.
[48] Yu.I. Chumlyakov, S.P. Efimenko, I.V. Kireeva, E. Yu. Panchenko, H. Sehitoglu, K. Gall, L.H. Yahia, Effects of shape memory and superelasticity in aged TiNi single crystals, Doklady Physics. 46 (2001) 849-852.
DOI: 10.1134/1.1433527
[49] N. S. Surikova, Yu. I. Chumlyakov, Mechanisms of Plastic Deformation of the Titanium Nickelide Single Crystals, Fiz. Met. Metalloved. 89 (2000) 98-107.
[50] S. Miyazaki, S. Kimura, K. Otsuka, Y. Suzuki, The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta Metall. 18 (1984) 883-888.
[51] H. Sehitoglu, R. Hamilton, D. Canadinc, X.Y. Zhang, I. Karaman, Yu. Chumlyakov, H.J. Maier, Detwinning in NiTi alloys, Metall. and mat. trans. A. 34 (2003) 6-13.
[52] E. Yu. Panchenko, I.V. Kireeva, Yu.I. Chumlyakov, S.P. Efimenko, V.B. Aksenov, H. Sehitogly, Features of thermoelastic martensitic transformations in.
DOI: 10.1134/1.1545372
[1] titanium-nickel single crystals, Doklady Physics. 48 (2003) 34-37.
[53] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys , Journal de Physique. 43 (1982) C4-255-260.
[54] Yu. I. Chumlyakov and I. V. Kireeva, Orientation Dependence of Shape-Memory Effects and Superelasticity in Ti–30% Ni–20% Cu Single Crystals, Physics of Metals and Metallography. 88 (1999) 308-320.
[55] E. Y. Panchenko, Y. I. Chumlyakov, I. V. Kireeva, A. V. Ovsyannikov, H. Sehitoglu, I. Karaman, H.J. Maier, Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals, Physics of Metals and Metallography. 106 (2008).
[56] Yu. Chumlyakov, I. Kireeva, E. Panchenko, I. Karaman, H.J. Maier, E. Timofeeva, Shape memory effect and high-temperature superelasticity in high-strength single crystals, J. of Alloys and Compounds. 557 (2013) S393-S398.
[57] A. M. Li, Y. I. Chumlyakov, A. D. Korotayev, Work hardening during multiple twinning in Cu-Ti-Al single crystals, Physics of Metals and Metallography. 62 (1986) 164-170.
[58] D.L. Beke, L. Daróczi, C. Lexcellent , V. Mertinger, Determination of stress dependence of elastic and dissipative energy terms of martensitic phase transformations in a NiTi shape memory alloy, J. Phys. IV France. 115 (2004) 279-285.
[59] Y. I. Chumlyakov, V. F. Yesipenko, L. S. Bushnev, A. D. Korotayev, Relation between twinning and slip in single crystals of heterophase alloys with low stacking fault energy, Physics of Metals and Metallography. 56 (1983) 160-167.
[60] A. D. Korotaev, Y. I. Chumlyakov, V. F. Esipenko, L. S. Bushnev, Superelasticity effects in single crystals of Cu-15%Al-2% Co with non-coherent particles due to twinning, Physica Status Solidi (A) Applied Research. 82 (1984) 405-412.
[61] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape- Memory alloys, Physics of Metals and Metallography. 112 (2011).
[62] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, I.B. Trubitsyna, On the lattice parameters of phases in binary TiNi shape memory alloys, Acta mater. 52 (2004) 4479-4492.
[63] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metal. Mater. 42 (1994) 475-487.
[64] S. Ii, K. Yamauchi, Y. Maruhashi, M. Nishida, Direct evidence of correlation between {201}B19' and {114}B2 deformation twins in TiNi shape memory alloys, Scripta Mater. 49 (2003) 723-727.
[65] J.X. Zhang, M. Sato, A. Ishida, Deformation mechanism of martensite in Ti-rich Ti-Ni shape memory alloy thin films, Acta Materialia. 54 (2006) 1185-1198.
[66] J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelastisity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature, Physical Metallurgy and Materials Science. 39 (2008).
[67] E. Dogan, I. Karaman, Y.I. Chumlyakov, Z.P. Luo, Microstructure and martensitic transformation characterictics of CoNiGa high temperature shape memory alloys, Acta Mater. 59 (2011) 1168-1183.
[68] J. Dadda, H. J Maier., I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelasricity at elevated temperatures in.
[1] oriented Co49Ni21Ga30 single crystals under compression, Scripta Mater. 55 (2006) 663-666.
[69] J. Liu, H. Xie, Y. Huo, H. Zheng, J. Li, Microstructure evolution in CoNiGa shape memory alloys, J. of Alloys and Compounds. 429 (2006) 145-157.
[70] F.C. Lovey, V. Torra, Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structucal defects in Cu-Zn-Al, Prog. Mater. Sci. 44 (1999) 189 p.
[71] I.V. Kireeva, J. Pons, C. Picornell, Yu.I. Chumlyakov, E. Cesari, I.V. Kretinina, Influence of γ¢ nanometric particles on martensitic transformation and twinning structure of L10 martensite in Co-Ni-Ga ferromagnetic shape memory single crystals, Intermetallics. 35 (2013).
[72] V.V. Kokorin, Martensitic transformation in non-uniform solid solutions, Nauk. Dumka, Kiev, (1987).
[73] L.Q. Chen, D.Y. Li, Selective variant growth of coherent Ti3Ni4 precipitate in a TiNi alloy under applied stresses, Acta Mater. 45 (1997) 471-479.
[74] L.Q. Chen, D.Y. Li, Morphological of coherent multi-variant Ti11Ni14 precipitates in a Ti-Ni alloys under an applied stresses – a computer simulation study, Acta Mater. 46 (1998) 639-649.
[75] I.V. Kireeva, C. Picornell, J. Pons, I.V. Kretinina, Yu.I. Chumlyakov, E. Cesari, Effect of oriented γ¢ precipitates on shape memory effect and superelasticity in Co-Ni-Ga single crystals, Acta Mater. 68 (2014) 127-139.
[76] P. Wollants, J.R. Roos, L. Delaey, Thermally and stress-induced thermoelastic transformations in the reference frame of equilibrium thermodynamics, Prog. in Mater. Sci. 37 (1993) 227-288.
[77] R.J. Salzbrenner, M. Cohen, On the themodynamics of thermoelastic martensitic transformations, Acta Metallurgica. 27 (1979) 739-748.
[78] U.F. Kocks, A.S. Argon, M.F. Asby, Thermodinamics and Kinetics of Slip. In Progress in Materials Science, edited by B. Chalmers, J.W. Christian and T. B. Massalski, Pergamon Press, Oxford, (1975).
[79] K. Niitsu, T. Omori, R. Kainuma, Stress-induced transformation behaviors at low temperatures in Ti-51. 8 Ni (at. %) shape memory alloy, J. Applied Phys. Letters. 102 (2013) 231915-1 -231915-4.
DOI: 10.1063/1.4809935
[80] J. Pons, E. Cesari, C. Segu, F. Masdeu, Ferromagnetic shape memory alloys: alternatives to NiMnGa, Mater. Sci. Eng. A. 481 (2008) 57-65.
[81] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett. 80 (2002) 1746-1748.
DOI: 10.1063/1.1458075
[82] R.F. Hamilton, H. Sehitoglu, C. Efstathiou, H.J. Maier, Inter-martensitic transitions in NieFeeGa single crystals, Acta Mater. 55 (2007) 4867-4876.
[83] E. Panchenko, Y. Chumlyakov, H.J. Maier, E. Timofeeva, I. Karaman, Tension/compression asymmetry of functional properties in.
[1] oriented ferromagnetic NiFeGaCo single crystals, Intermetallics. 18 (2010) 2458-2463.
[84] E.E. Timofeeva, E.Y. Panchenko, Y.I. Chumlyakov, H. Maier, Development of thermoelastic martensitic transformations in ferromagnetic.
[11] oriented NiFeGa single crystals in compression. 54 (2012) 1427-1430.
[85] S. Kaufmann, U.K. Roßler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fahler, Adaptive Modulations of Martensites, Physical Review Letters. 104 (2010) 145702.
[86] A. G. Khachaturyan, S. M. Shapiro, S. Semenovskaya, Adaptive phase formation in martensitic transformation, Physical Review B. 43 (1991) 10832-10843.
[87] Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida, Stress-strain characteristics in Ni-Ga-Fe Ferromagnetic Shape Memory Alloys, Appl. Phys. Lett. 84 (2004) 1275–1277.
DOI: 10.1063/1.1642277
[88] Y.I. Chumlyakov, I.V. Kireeva, E.Y. Panchenko, V.A. Kirillov, E.E. Timofeeva, I.V. Kretinina, Y.N. Danil'son, I. Karaman, H. Maier, E. Cesari, Thermoelastic martensitic transformations in single crystals with disperse particles, Russian Physics Journal. 54 (2012).
[89] K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys, Acta Metallurgica. 24 (1976) 207-226.
[90] С. Efstathiou, H. Sehitoglu, J. Carroll, J. Lambros, H.J. Maier, Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa, Acta Materialia. 56 (2008) 3791-3799.
[91] Y. Liu, H. Yang, Strain dependence of the Clausius-Clapeyron relation for thermoelastic martensitic transformations in NiTi, Smart. Mater. Struct. 16 (2007) S22-S27.
[92] C. Segu, J. Pons, E. Cesari, J. Dutkiewicz Low-temperature behavior of NiFeGa shape memory alloys, Mater. Sci. Eng. A. 438-440 (2006) 923-926.
[93] A.L. Roytburd, Ju. Slusker, Deformation through a coherent phase transformation, Scripta Metallurgica et Materialia. 32 (1995) 761-766.
[94] A.L. Roytburd, Ju. Slusker, Equilibrium two-phase microstructure at phase transformation in a constrained solid, Materials Science and Engineering A. 238 (1997) 23-31.
[95] A.L. Roytburd, Intrinsic Hysteresis of Superelastic Deformation, Materials Science Forum. 327-328 (2000) 389-392.
[96] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys, Acta Materialia. 55 (2007) 4253-4269.
[97] E.Y. Panchenko, E.E. Timofeeva, L.P. Kazantseva, Y.I. Chumlyakov, H. Maier, The effect of heat treatment on mechanisms of martensitic transformations in ferromagnetic Ni49Fe18Ga27Co6 single crystals, Russian Physics Journal. 53 (2011) 1219-1222.
[98] T. Omori, N. Kamiya, Y. Sutou, K. Oikawa, R. Kainuma, K. Ishida, Phase transformations in Ni–Ga–Fe ferromagnetic shape memory alloys, Materials Science and Engineering A. 378 (2004) 403-408.
[99] T. Omory, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloys, Science. 333 (2011) 68-70.
[100] Y. Chumlyakov, E. Panchenko, I. Kireeva, I. Karaman, H. Sehitoglu, H.J. Maier, A. Tverdokhlebova and A. Ovsyannikov, Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals, Materials Science and Engineering A. 481-482 (2008).
[101] M.V. Klassen-Nekludova. Mechanical Twinning of crystals. Moscow: Publisher of the Academy of Sciences of the USSR (1960) 262.
[102] E. Goo, T. Duerig, K. Melton, R. Sinclair, Mechanical twinning in Ti50Ni47Fe3 and Ni49Ni51 alloys, Acta metall. 33 (1985) 1725-1733.
[103] B.A. Strukov, A.P. Levanyuk, Physical bases of the ferroelectric phenomena in crystals, Nauka publishing house, Moscow, 1983, 240 [in Russian].
[104] Y.I. Chumlyakov, E.Y. Panchenko, A.V. Ovsyannikov, S.A. Chusov, V.A. Kirillov, I. Karaman, H.J. Maier, High-temperature superelasticity and the shape-memory effect in.
[1] Co-Ni-Al single crystals, Physics of Metals and Metallography, 107 (2009) 194-205.
[105] E. Yu. Panchenko, Yu.I. Chumlyakov, H. Maier, A.S. Kanafieva, 1 and V.A. Kirillov. The effect of ageing of the.
[11] oriented Co35Ni35Al30 single crystals in free state and under loading on their functional properties, Russian Physics Journal. 55 (2013) 1123-1131.