p.3
p.20
p.38
p.77
p.107
p.174
p.207
p.232
Novel Achievements in the Research Field of Multifunctional Shape Memory Ni-Mn-In and Ni-Mn-In-Z Heusler Alloys
Abstract:
Nowadays, ferromagnetic shape memory Heusler alloys are ones of famous multifunctional materials exhibiting many interesting features in the temperature interval of the martensitic transformation due to the strong interrelation between crystal structure and magnetic order. The multiferroic, magnetoresistive, martensitic and related magnetic shape-memory behavior as well as magnetocaloric properties are examples of these unique features. Generally, tuning of both structural and magnetic transition temperatures can be useful to achieve better functional properties. Today, the optimization problem of Heusler compounds is of a great importance. In this chapter, we review the most important features of ternary and quaternary ferromagnetic shape memory Ni-Mn-In and Ni-Mn-In-Z materials, which are experimentally and theoretically obtained in the last three years. We discuss the experiments devoted to the study of phase diagrams, thermomagnetizations, magnetic field and stress induced strains, magnetoresistance and magnetocaloric effects. The theoretical investigations of magnetic and structural properties are reviewed in the framework of the phenomenological approach, first-principles and Monte Carlo methods.
Info:
Periodical:
Pages:
38-76
Citation:
Online since:
March 2015
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] T. Tadaki, K. Otsuka and K. Shimizu, Shape memory alloys, Annu. Rev. Mater. Sci. 18 (1988) 25-45.
[2] V. Birman, Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50 (1997) 629-645.
DOI: 10.1115/1.3101674
[3] K. Otsuka and X. Ren, Recent developments in the research of the shape memory alloys, Intermetallics 7 (1999) 511-528.
[4] K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.
[5] P.L. Reece, Progress in Smart Materials and Structures, Nova Science Publishers Inc., New-York, (2007).
[6] K. Ullakko, J.K. Huang, C. Kantner and R.C. O'Handley, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966-1968-1-3.
DOI: 10.1063/1.117637
[7] J.P. Teter, M. Wun-Fogle, A.E. Clark and K. Mahoney, Anisotropic perpendicular axis magnetostriction in twinned TbxDy1-xFe1. 95, J. Appl. Phys. 67 (1990) 5004-5006.
DOI: 10.1063/1.344704
[8] A.N. Vasil'ev, V.D. Buchel'nikov, T. Takagi, V.V. Khovailo and E.I. Estrin, Shape memory ferromagnets, Phys. -Usp. 46 (2003) 559-588.
[9] A. Planes and Ll. Mañosa, Ferromagnetic shape memory alloys, Mater. Sci. Forum 512, (2006) 145-152.
[10] V.D. Buchelnikov, A.N. Vasiliev, V.V. Koledov, S.V. Taskaev, V.V. Khovaylo and V.G. Shavrov, Magnetic shape-memory alloys: phase transitions and functional properties, Phys. -Usp. 49 (2006) 871-877.
[11] P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper and E.F. Wassermann, Modelling the Phase Diagram of Magnetic Shape Memory Heusler Alloys, J. Phys. D: Appl. Phys. 39 (2006) 865-889.
[12] P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak and A.T. Zayak, Shape memory alloys: a summary of recent achievements, Mater. Sci. Forum 583 (2008) 21-41.
[13] A. Planes, Ll. Manosa and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, J. Phys. Condens. Mat. 21 (2009) 233201-1-29.
[14] Y. Sutou,Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Magnetic and martensitic transformations of Ni-Mn-X (X=In, Sn, Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85 (2004) 4358-4360.
DOI: 10.1063/1.1808879
[15] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, A. Moya, L. Mañosa and A. Planes, Inverse magnetocaloric effect inferromagnetic Ni-Mn-Sn alloys, Nat. Mater. 4 (2005) 450-454.
DOI: 10.1038/nmat1395
[16] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.
DOI: 10.1038/nature04493
[17] X. Moya, L. Mañosa, A. Planes, T. Krenke, M. Acet and E.F. Wassermann, Martensitic transition and magnetocaloric properties in Ni-Mn-X alloys, Mat. Sci. Eng. A 348-440, (2006) 911-915.
[18] M. Khan, I. Dubenko, S. Stadler and N. Ali, Magnetostructural phase transitions in Ni50Mn25+xSb25-x Heusler alloys, J. Phys. Condens. Mat. 20 (2008) 235204-1-8.
[19] Ll. Mañosa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio and J. -Ll. Tamarit, S. Aksoy, T. Krenke and M. Acet, Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys, Appl. Phys. Lett. 92 (2008).
DOI: 10.1063/1.2830999
[20] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater. 11 (2012) 620-625.
DOI: 10.1038/nmat3334
[21] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, Ll. Mañosa and A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413-1-10.
[22] T. Kanomata, T. Yasuda, S. Sasaki, H. Nishihara, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, K. -U. Neumann, K.R.A. Ziebeck, Magnetic properties on shape memory alloys Ni2Mn1+xIn1-x, J. Magn. Magn. Mater. 321 (2009) 773-776.
[23] I. Dubenko, T. Samanta, A.K. Pathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov and N. Ali, Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys, J. Magn. Magn. Mater. 324 (2012) 3530-3534.
[24] A.K. Pathak, M. Khan, I. Dubenko, S. Stadler and N. Ali, Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys, Appl. Phys. Lett. 90 (2007) 262504-1-3.
DOI: 10.1063/1.2752720
[25] Y.J. Huang, Q.D. Hu and J.G. Li, Design in Ni-Mn-In magnetic shape-memory alloy using compositional maps, Appl. Phys. Lett. 101 (2012) 222403-1-3.
DOI: 10.1063/1.4768235
[26] Yu.V. Kaletina, V.M. Schastlivtsev, A.V. Korolev and E.A. Fokina, Phase transformations in Ni-Mn-In based alloys in magnetic field, Phys. Met. Metallogr. 113 (2012) 1029-1034.
[27] Yu.V. Kaletina, E.G. Gerasimov, V.M. Schastlivtsev, E.A. Fokina and P.B. Terent'ev, Magnetic-field-induced martensitic transformations in Ni47-xMn42+xIn11 alloys (with 0 ≤ x ≤ 2), Phys. Met. Metallogr. 114 (2013) 838-844.
[28] T. Miyamoto, M. Nagasako, R. Kainuma, Phase equilibria in the Ni-Mn-In alloy system, J. Alloy. Compd. 549 (2013) 57-63.
[29] Z. Jin, A Study of the range of stability of σ phase in some ternary systems, Scand. J. Metall., 10 (1981) 279-287.
[30] J. Liu, N. Scheerbaum, S. Kauffmann-Weiss and O. Gutfleisch, NiMn-based alloys and composites for magnetically controlled dampers and actuators, Adv. Eng. Mater. 14 (2012) 653-667.
[31] C. Jing, X.L. Wang, P. Liao, Z. Li, Y.J. Yang, B.J. Kang, D.M. Deng, S.X. Cao, J.C. Zhang and J. Zhu, Martensitic phase transition, inverse magnetocaloric effect, and magnetostrain in Ni50Mn37-xFexIn13 Heusler alloys, J. Appl. Phys. 114 (2013).
DOI: 10.1063/1.4818486
[32] Z.H. Liu, G.T. Li, Z.G. Wu, X.Q. Ma, Y. Liu, G.H. Wu, Tailoring martensitic transformation and martensite structure of NiMnIn alloy by Ga doping In, J. Alloy. Compd. 535 (2012) 120-123.
[33] T. Miyamoto, W. Ito, R.Y. Umetsu, T. Kanomata, K. Ishida and R. Kainuma, Influence of annealing conditions on magnetic properties of Ni50Mn50-xInx Heusler-type alloys, Mater. Trans. 52 (2011) 1836-1839.
[34] V. Recarte, J.I. Peґrez-Landazaґbal, V. Saґnchez-Alarcos and J.A. Rodrıґguez-Velamazaґn, Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni-Mn-In metamagnetic shape memory alloys, Acta Mater. 60 (2012).
[35] V. Recarte, J.I. Peґrez-Landazaґbal and V. Saґnchez-Alarcos, Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni-Mn-In, J. Alloy. Compd. 536 (2012) S308-S311.
[36] J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, P. Lazpita, J. Gutierrez and I. Orue, Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy, Appl. Phys. Lett. 102 (2013) 071904-1-3.
DOI: 10.1063/1.4793412
[37] J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, J. Gutierrez and P. Lazpita, Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy, J. Phys. Condens. Mat. 25 (2013) 484005-1-6.
[38] T. Miyamoto, W. Ito, R. Y. Umetsu, R. Kainuma, T. Kanomata and K. Ishida, Phase stability and magnetic properties of Ni50Mn50-xInx Heusler-type alloys, Scripta Mater. 62 (2010) 151-154.
[39] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, Ll. Mañosa, A. Planes, E. Suard and B. Ouladdiaf, Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In, Phys. Rev. B 75 (2007) 104414-1-6.
[40] Y. Feng, J.H. Sui, H.B. Wang and W. Cai, Reversible magnetic-field-induced phase transformation and magnetocaloric effect above room temperature in a Ni-Mn-In-Fe polycrystal, J. Magn. Magn. Mater. 324 (2012) 1982-(1984).
[41] A.K. Pathak, I. Dubenko, S. Stadler, N. Ali, Temperature and field induced strain in polycrystalline Ni50Mn35In15-xSix magnetic shape memory Heusler alloys, J. Alloy. Compd. 509 (2011) 1106-1110.
[42] S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa and A. Planes, Magnetization easy axis in martensitic Heusler alloys estimated by strain measurements under magnetic field, Appl. Phys. Lett. 91 (2007) 251915-1-3.
DOI: 10.1063/1.2817754
[43] J. Liu, S. Aksoy, N. Scheerbaum, M. Acet and O. Gutfleisch, Large magnetostrain in polycrystalline Ni-Mn-In-Co, Appl. Phys. Lett. 95 (2009) 232515-1-3.
DOI: 10.1063/1.3273853
[44] A.N. Vasil'ev, E.I. Estrin, V.V. Khovailo, A.D. Bozhko, R.A. Ischuk, M. Matsumoto, T. Takagi and J. Tani, Dilatometric study of Ni2+xMn1-xGa under magnetic field, Int. J. Appl. Electrom. 12 (2000) 35-40.
DOI: 10.3233/jae-2000-198
[45] J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama and Y.I. Chumlyakov, Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys, Acta Mater. 60 (2012).
[46] K. Niitsu, X. Xu, R. Y. Umetsu and R. Kainuma, Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy, Appl. Phys. Lett. 103 (2013) 242406-1-3.
DOI: 10.1063/1.4840336
[47] L. Chen, F.X. Hu, J. Wang, J.L. Zhao, J.R. Sun, B.G. Shen, J.H. Yin and L.Q. Pan, Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni45Co5Mn36. 6In13. 4 alloys, J. Phys. D: Appl. Phys. 44 (2011).
[48] L. Porcar, D. Bourgault and P. Courtois, Large piezoresistance and magnetoresistance effects on Ni45Co5Mn37. 5In12. 5 single crystal, Appl. Phys. Lett. 100 (2012) 152405-1-3.
DOI: 10.1063/1.3701170
[49] I. Dincer, E. Yuzuak and Y. Elerman, The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16, J. Alloy. Compd. 509 (2011) 794-799.
[50] M.K. Chattopadhyay, V.K. Sharma, A. Chouhan, P. Arora and S. B. Roy Combined effect of hydrostatic pressure and magnetic field on the martensitic transition in the Ni49CuMn34In16 alloy, Phys. Rev. B 84 (2011) 064417-1-9.
[51] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra, A. Khandelwal, R.K. Meena and S.B. Roy, Scaling of the isothermal entropy change and magnetoresistance in Ni-Mn-In based off-stoichiometric Heusler alloys, Eur. Phys. J. Appl. Phys. 62 (2013).
[52] S. Pramanick, S. Chatterjee, D. Venkateshwarlu, V. Ganesan, S.K. De, S. Giri, S. Majumdar, Revival of martensitic instability in Ga doped Ni-Mn-In alloys, Intermetallics 42 (2013) 56-61.
[53] V.K. Sharma, M.K. Chattopadhyay, A. Khandelwal and S. B. Roy, Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy, Phys. Rev. B 82 (2010) 172411-1-4.
[54] V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan and S.R. Roy, Large magnetoresistance in Ni50Mn34In16 alloy, Appl. Phys. Lett. 89 (2006) 222509-1-3.
DOI: 10.1063/1.2399365
[55] K.A. Gschneidner, Jr. and V.K. Pecharsky, Magnetocaloric materials, Annu. Rev. Mater. Sci. 30 (2000) 387-429.
[56] K.A. Gschneidner Jr, V.K. Pecharsky and A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479-1539.
[57] E. Bruck, O. Tegus, D. T. Cam Thanh, T. Trung Nguyen and K. H. J. Buschow, A Review on Mn Based Materials for Magnetic Refrigeration: Structure and Properties, Int. J. Refrig. 31 (2008) 763–770.
[58] K. A. Gschneidner, Jr. and V. K. Pecharsky, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig. 31 (2008) 945-961.
[59] V.D. Buchelnikov and V.V. Sokolovskiy, Magnetocaloric Effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler Alloys, Phys. Met. Metallogr. 112 (2011) 633-665.
[60] F.S. Liu, Q.B. Wang, W.Q. Ao, Y.J. Yu, L.C. Pan, J.Q. Li, Magnetocaloric effect in high Ni content Ni52Mn48-xInx alloys under low field change, J. Magn. Magn. Mater. 324 (2012) 514-518.
[61] V.K. Sharma, M.K. Chattopadhyay and S.B. Roy, The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy, J. Phys. Condens. Mat. 23 (2011) 366001-1-10.
[62] A.P. Kazakov, V.N. Prudnikov, A.B. Granovsky, A.P. Zhukov, J. Gonzalez, I. Dubenko, A.K. Pathak, S. Stadler and N. Ali, Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys, Appl. Phys. Lett. 98 (2011).
DOI: 10.1063/1.3574088
[63] V.D. Buchelnikov, M.O. Drobosyuk, E.A. Smyshlyaev, O.O. Pavlukhina, A.V. Andreevskikh, V.V. Sokolovskiy, S.V. Taskaev, V.V. Koledov, V.G. Shavrov, V.V. Khovaylo and A.A. Fediy, The Magnetocaloric effect in Ni-Mn-X (X=Ga, In) Heusler alloys and manganites with magnetic transition close to room temperature, Sol. St. Phen. 168-169 (2011).
[64] Y.I. Spichkin, A.M. Tishin, D.B. Kopeliovich, A.Y. Malyshev, Direct measurements of the magnetocaloric effect: realization and results, in: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature (Des Moines, USA), International Institute of Refrigeration, Commissions B2, A1 with E2, Paris, France, 2009, pp.173-180.
[65] R. Das, A. Perumal and A. Srinivasan, Evaluation of Ni–Mn–In–Si alloys for magnetic refrigeration application, IEEE T. Magn. 47 (2011) 2463-2465.
[66] R. Das, A. Perumal and A. Srinivasan, Effect of particle size on the magneto-caloric properties of Ni51Mn34In14Si1 alloy, J. Alloy. Compd. 572 (2013) 192-198.
[67] A.Y. Takeuchi, C.E. Guimarães, E.C. Passamani and C. Larica, Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34. 5In15. 5 Heusler-type alloy, J. Appl. Phys. 111 (2012) 103902-1-6.
DOI: 10.1063/1.4716033
[68] I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, A. Granovsky, A. Zhukov and N. Ali, The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34. 8In14. 2B, Appl. Phys. Lett. 100 (2012).
DOI: 10.1063/1.4714539
[69] I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, A. Granovsky, A. Zhukov and N. Ali, The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni-Mn-In-B Heusler alloy, IEEE T. Magn. 48 (2012).
[70] P.A. Bhobe, K.R. Priolkar and A.K. Nigam, Room temperature magnetocaloric effect in Ni-Mn-In, Appl. Phys. Lett. 91 (2007) 242503-1-3.
DOI: 10.1063/1.2823601
[71] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra and S.B. Roy, Elevating the temperature regime of the large magnetocaloric effect in a Ni-Mn-In alloy towards room temperature, J. Phys. D: Appl. Phys. 44 (2011) 145002-1-5.
[72] S.M. Benford and G.V. Brown, T-S diagram for gadolinium near the Curie temperature, J. Appl. Phys. 52 (1981) 2110-2112.
DOI: 10.1063/1.329633
[73] V.K. Sharma, M.K. Chattopadhyay and S.B. Roy, Large inverse magnetocaloric effect in Ni50Mn34In16, J. Phys. D: Appl. Phys. 40 (2007) 1869-1873.
[74] V. Sanchez-Alarcos, V. Recarte, J.I. Perez-Landazabal, J.R. Chapelon and J.A. Rodrıguez-Velamazan, Structural and magnetic properties of Cr-doped Ni-Mn-In metamagnetic shape memory alloys, J. Phys. D: Appl. Phys. 44 (2011) 395001-1-7.
[75] V.K. Sharma, M.K. Chattopadhyay, S.K. Nath, K.J.S. Sokhey, R. Kumar, P. Tiwari and S.B. Roy, The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy, J. Phys. Condens. Mat. 22 (2010) 486007-1-11.
[76] V.V. Khovaylo, K.P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V.V. Koledov, V.G. Shavrov, G. Wang, E. Palacios, J. Bartolomé and R. Burriel, Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys, Phys. Rev. B 81 (2010).
[77] X. Moya, Ll. Mañosa, A. Planes, S. Aksoy, M. Acet, E.F. Wassermann and T. Krenke, Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape-memory alloy, Phys. Rev. B 75 (2007) 184412-1-5.
[78] F. Guillou, P. Courtois, L. Porcar, P. Plaindoux, D. Bourgault and V. Hardy, Calorimetric investigation of the magnetocaloric effect in Ni45Co5Mn37. 5In12. 5, J. Phys. D: Appl. Phys. 45 (2012) 255001-1-7.
[79] M. Kataoka, R.Y. Umetsu, W. Ito, T. Kanomata, R. Kainuma, Repulsive magneto-structural interaction in the ferromagnetic shape memory alloys Ni2Mn1+xIn1-x, J. Magn. Magn. Mater. 327 (2013) 125-131.
[80] R.Y. Umetsu, W. Ito, K. Ito, K. Koyama, A. Fujita, K. Oikawa, T. Kanomata, R. Kainuma, K. Ishida, Anomaly in entropy change between parent and martensite phases in the Ni50Mn34In16 Heusler alloy, Scripta Mater. 60 (2009) 25-28.
[81] L.H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Della Torre, Y. Jin, Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy, J. Alloy. Compd. 525 (2012) 34-38.
[82] M. Ghahremani, H. EIBidweihy, L. Bennett, E. D. Torre, M. Zou, and F. Johnson, Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy, J. Appl. Phys. 113 (2013) 17A943-1-3.
DOI: 10.1063/1.4801739
[83] M.A. Zagrebin, V.D. Buchelnikov, K.I. Kostromitin, Thermodynamic analysis of possible phase states in Ni50Mn35In15 Heusler alloy, Phys. Status Solidi C 11 (2014) 1144-1148.
[84] V.V. Sokolovskiy, V.D. Buchelnikov, K.I. Kostromitin, S.V. Taskaev, P. Entel, Modeling of the Magnetocaloric Effect in Heusler Ni-Mn-X (X = In, Sn, Sb) Alloys Using Antiferromagnetic Five-State Potts Model with Competing Interactions, Mater. Res. Soc. Symp. P. 1310 (2011).
DOI: 10.1557/opl.2011.632
[85] V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki and T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys, J. Phys. D: Appl. Phys. 44 (2011).
[86] A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and Its Applications, IOP Series in Condensed Matter Physics, edited by J. M. D. Coey, D. R. Tilley, and D. R. Vij IOP, Bristol, (2003).
[87] V.V. Sokolovskiy, V.D. Buchelnikov, and P. Entel, Optimization of the Magnetocaloric Effect in Ni-Mn-In Alloys: A Theoretical Study, J. Exp. Theor. Phys. 115 (2012) 662-665.
[88] V.V. Sokolovskiy, V.D. Buchelnikov, S.V. Taskaev, V.V. Khovaylo, M. Ogura and P. Entel, Quaternary Ni-Mn-In-Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?, J. Phys. D: Appl. Phys. 46 (2013) 305003-1-9.
[89] J. Bai, N. Xu, J. -M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, First-principles investigations of crystallographic, magnetic, and electronic structures in Ni2XIn (X = Mn, Fe, and Co), J. Appl. Phys. 112 (2012) 114901-1-6.
DOI: 10.1063/1.4767331
[90] V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn, Sb), Phys. Rev. B 78 (2008).
[91] Chun-Mei Li, Hu-Bin Luo, Qing-Miao Hu, Rui Yang, Borje Johansson, and Levente Vitos, Role of magnetic and atomic ordering in the martensitic transformation of Ni-Mn-In from a first-principles study, Phys. Rev. B 86 (2012) 214205-1-7.
[92] C.L. Tan, Y.W. Huang, X. H. Tian, J. X. Jiang, and W. Cai, Origin of magnetic properties and martensitic transformation of Ni-Mn-In magnetic shape memory alloys, Appl. Phys. Lett. 100 (2012) 132402-1-3.
DOI: 10.1063/1.3697637
[93] J. Bai, N. Xu, J. -M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Defect formation energy and magnetic properties of off-stoichiometric Ni-Mn-In alloys by first-principles calculations, J. Appl. Phys. 113 (2013) 174901-1-6.
DOI: 10.1063/1.4803139
[94] K.R. Priolkar, P.A. Bhobe, D.N. Lobo, S.W. D'Souza, S.R. Barman, Aparna Chakrabarti, and S. Emura, Antiferromagnetic exchange interactions in the Ni2Mn1. 4In0. 6 ferromagnetic Heusler alloy, Phys. Rev. B 87 (2013) 144412-1-6.
[95] P. Klaer, H.C. Herper, P. Entel, R. Niemann, L. Schultz, S. Fähler, and H.J. Elmers, Electronic structure of the austenitic and martensitic state of magnetocaloric Ni-Mn-In Heusler alloy films, Phys. Rev. B, 88 (2013) 174414-1-8.
[96] A. Ayuela, J. Enkovaara, and R. M. Nieminen, Ab initio study of tetragonal variants in Ni2MnGa alloy, J. Phys. Condens. Mat. 14 (2002) 5325-5336.