Novel Achievements in the Research Field of Multifunctional Shape Memory Ni-Mn-In and Ni-Mn-In-Z Heusler Alloys

Article Preview

Abstract:

Nowadays, ferromagnetic shape memory Heusler alloys are ones of famous multifunctional materials exhibiting many interesting features in the temperature interval of the martensitic transformation due to the strong interrelation between crystal structure and magnetic order. The multiferroic, magnetoresistive, martensitic and related magnetic shape-memory behavior as well as magnetocaloric properties are examples of these unique features. Generally, tuning of both structural and magnetic transition temperatures can be useful to achieve better functional properties. Today, the optimization problem of Heusler compounds is of a great importance. In this chapter, we review the most important features of ternary and quaternary ferromagnetic shape memory Ni-Mn-In and Ni-Mn-In-Z materials, which are experimentally and theoretically obtained in the last three years. We discuss the experiments devoted to the study of phase diagrams, thermomagnetizations, magnetic field and stress induced strains, magnetoresistance and magnetocaloric effects. The theoretical investigations of magnetic and structural properties are reviewed in the framework of the phenomenological approach, first-principles and Monte Carlo methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-76

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Tadaki, K. Otsuka and K. Shimizu, Shape memory alloys, Annu. Rev. Mater. Sci. 18 (1988) 25-45.

DOI: 10.1146/annurev.ms.18.080188.000325

Google Scholar

[2] V. Birman, Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50 (1997) 629-645.

DOI: 10.1115/1.3101674

Google Scholar

[3] K. Otsuka and X. Ren, Recent developments in the research of the shape memory alloys, Intermetallics 7 (1999) 511-528.

DOI: 10.1016/s0966-9795(98)00070-3

Google Scholar

[4] K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[5] P.L. Reece, Progress in Smart Materials and Structures, Nova Science Publishers Inc., New-York, (2007).

Google Scholar

[6] K. Ullakko, J.K. Huang, C. Kantner and R.C. O'Handley, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966-1968-1-3.

DOI: 10.1063/1.117637

Google Scholar

[7] J.P. Teter, M. Wun-Fogle, A.E. Clark and K. Mahoney, Anisotropic perpendicular axis magnetostriction in twinned TbxDy1-xFe1. 95, J. Appl. Phys. 67 (1990) 5004-5006.

DOI: 10.1063/1.344704

Google Scholar

[8] A.N. Vasil'ev, V.D. Buchel'nikov, T. Takagi, V.V. Khovailo and E.I. Estrin, Shape memory ferromagnets, Phys. -Usp. 46 (2003) 559-588.

DOI: 10.1070/pu2003v046n06abeh001339

Google Scholar

[9] A. Planes and Ll. Mañosa, Ferromagnetic shape memory alloys, Mater. Sci. Forum 512, (2006) 145-152.

DOI: 10.4028/www.scientific.net/msf.512.145

Google Scholar

[10] V.D. Buchelnikov, A.N. Vasiliev, V.V. Koledov, S.V. Taskaev, V.V. Khovaylo and V.G. Shavrov, Magnetic shape-memory alloys: phase transitions and functional properties, Phys. -Usp. 49 (2006) 871-877.

DOI: 10.1070/pu2006v049n08abeh006081

Google Scholar

[11] P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper and E.F. Wassermann, Modelling the Phase Diagram of Magnetic Shape Memory Heusler Alloys, J. Phys. D: Appl. Phys. 39 (2006) 865-889.

DOI: 10.1088/0022-3727/39/5/s13

Google Scholar

[12] P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak and A.T. Zayak, Shape memory alloys: a summary of recent achievements, Mater. Sci. Forum 583 (2008) 21-41.

DOI: 10.4028/www.scientific.net/msf.583.21

Google Scholar

[13] A. Planes, Ll. Manosa and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, J. Phys. Condens. Mat. 21 (2009) 233201-1-29.

DOI: 10.1088/0953-8984/21/23/233201

Google Scholar

[14] Y. Sutou,Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Magnetic and martensitic transformations of Ni-Mn-X (X=In, Sn, Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85 (2004) 4358-4360.

DOI: 10.1063/1.1808879

Google Scholar

[15] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, A. Moya, L. Mañosa and A. Planes, Inverse magnetocaloric effect inferromagnetic Ni-Mn-Sn alloys, Nat. Mater. 4 (2005) 450-454.

DOI: 10.1038/nmat1395

Google Scholar

[16] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957-960.

DOI: 10.1038/nature04493

Google Scholar

[17] X. Moya, L. Mañosa, A. Planes, T. Krenke, M. Acet and E.F. Wassermann, Martensitic transition and magnetocaloric properties in Ni-Mn-X alloys, Mat. Sci. Eng. A 348-440, (2006) 911-915.

DOI: 10.1016/j.msea.2006.02.053

Google Scholar

[18] M. Khan, I. Dubenko, S. Stadler and N. Ali, Magnetostructural phase transitions in Ni50Mn25+xSb25-x Heusler alloys, J. Phys. Condens. Mat. 20 (2008) 235204-1-8.

DOI: 10.1088/0953-8984/20/23/235204

Google Scholar

[19] Ll. Mañosa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio and J. -Ll. Tamarit, S. Aksoy, T. Krenke and M. Acet, Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2830999

Google Scholar

[20] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater. 11 (2012) 620-625.

DOI: 10.1038/nmat3334

Google Scholar

[21] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, Ll. Mañosa and A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Phys. Rev. B 73 (2006) 174413-1-10.

DOI: 10.1103/physrevb.73.174413

Google Scholar

[22] T. Kanomata, T. Yasuda, S. Sasaki, H. Nishihara, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, K. -U. Neumann, K.R.A. Ziebeck, Magnetic properties on shape memory alloys Ni2Mn1+xIn1-x, J. Magn. Magn. Mater. 321 (2009) 773-776.

DOI: 10.1016/j.jmmm.2008.11.079

Google Scholar

[23] I. Dubenko, T. Samanta, A.K. Pathak, A. Kazakov, V. Prudnikov, S. Stadler, A. Granovsky, A. Zhukov and N. Ali, Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys, J. Magn. Magn. Mater. 324 (2012) 3530-3534.

DOI: 10.1016/j.jmmm.2012.02.082

Google Scholar

[24] A.K. Pathak, M. Khan, I. Dubenko, S. Stadler and N. Ali, Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys, Appl. Phys. Lett. 90 (2007) 262504-1-3.

DOI: 10.1063/1.2752720

Google Scholar

[25] Y.J. Huang, Q.D. Hu and J.G. Li, Design in Ni-Mn-In magnetic shape-memory alloy using compositional maps, Appl. Phys. Lett. 101 (2012) 222403-1-3.

DOI: 10.1063/1.4768235

Google Scholar

[26] Yu.V. Kaletina, V.M. Schastlivtsev, A.V. Korolev and E.A. Fokina, Phase transformations in Ni-Mn-In based alloys in magnetic field, Phys. Met. Metallogr. 113 (2012) 1029-1034.

DOI: 10.1134/s0031918x12110129

Google Scholar

[27] Yu.V. Kaletina, E.G. Gerasimov, V.M. Schastlivtsev, E.A. Fokina and P.B. Terent'ev, Magnetic-field-induced martensitic transformations in Ni47-xMn42+xIn11 alloys (with 0 ≤ x ≤ 2), Phys. Met. Metallogr. 114 (2013) 838-844.

DOI: 10.1134/s0031918x13100050

Google Scholar

[28] T. Miyamoto, M. Nagasako, R. Kainuma, Phase equilibria in the Ni-Mn-In alloy system, J. Alloy. Compd. 549 (2013) 57-63.

DOI: 10.1016/j.jallcom.2012.08.128

Google Scholar

[29] Z. Jin, A Study of the range of stability of σ phase in some ternary systems, Scand. J. Metall., 10 (1981) 279-287.

Google Scholar

[30] J. Liu, N. Scheerbaum, S. Kauffmann-Weiss and O. Gutfleisch, NiMn-based alloys and composites for magnetically controlled dampers and actuators, Adv. Eng. Mater. 14 (2012) 653-667.

DOI: 10.1002/adem.201200038

Google Scholar

[31] C. Jing, X.L. Wang, P. Liao, Z. Li, Y.J. Yang, B.J. Kang, D.M. Deng, S.X. Cao, J.C. Zhang and J. Zhu, Martensitic phase transition, inverse magnetocaloric effect, and magnetostrain in Ni50Mn37-xFexIn13 Heusler alloys, J. Appl. Phys. 114 (2013).

DOI: 10.1063/1.4818486

Google Scholar

[32] Z.H. Liu, G.T. Li, Z.G. Wu, X.Q. Ma, Y. Liu, G.H. Wu, Tailoring martensitic transformation and martensite structure of NiMnIn alloy by Ga doping In, J. Alloy. Compd. 535 (2012) 120-123.

DOI: 10.1016/j.jallcom.2012.04.088

Google Scholar

[33] T. Miyamoto, W. Ito, R.Y. Umetsu, T. Kanomata, K. Ishida and R. Kainuma, Influence of annealing conditions on magnetic properties of Ni50Mn50-xInx Heusler-type alloys, Mater. Trans. 52 (2011) 1836-1839.

DOI: 10.1016/j.scriptamat.2009.10.006

Google Scholar

[34] V. Recarte, J.I. Peґrez-Landazaґbal, V. Saґnchez-Alarcos and J.A. Rodrıґguez-Velamazaґn, Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni-Mn-In metamagnetic shape memory alloys, Acta Mater. 60 (2012).

DOI: 10.1016/j.actamat.2012.01.020

Google Scholar

[35] V. Recarte, J.I. Peґrez-Landazaґbal and V. Saґnchez-Alarcos, Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni-Mn-In, J. Alloy. Compd. 536 (2012) S308-S311.

DOI: 10.1016/j.jallcom.2011.11.053

Google Scholar

[36] J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, P. Lazpita, J. Gutierrez and I. Orue, Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy, Appl. Phys. Lett. 102 (2013) 071904-1-3.

DOI: 10.1063/1.4793412

Google Scholar

[37] J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, J. Gutierrez and P. Lazpita, Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy, J. Phys. Condens. Mat. 25 (2013) 484005-1-6.

DOI: 10.1088/0953-8984/25/48/484005

Google Scholar

[38] T. Miyamoto, W. Ito, R. Y. Umetsu, R. Kainuma, T. Kanomata and K. Ishida, Phase stability and magnetic properties of Ni50Mn50-xInx Heusler-type alloys, Scripta Mater. 62 (2010) 151-154.

DOI: 10.1016/j.scriptamat.2009.10.006

Google Scholar

[39] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, Ll. Mañosa, A. Planes, E. Suard and B. Ouladdiaf, Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In, Phys. Rev. B 75 (2007) 104414-1-6.

DOI: 10.1103/physrevb.75.104414

Google Scholar

[40] Y. Feng, J.H. Sui, H.B. Wang and W. Cai, Reversible magnetic-field-induced phase transformation and magnetocaloric effect above room temperature in a Ni-Mn-In-Fe polycrystal, J. Magn. Magn. Mater. 324 (2012) 1982-(1984).

DOI: 10.1016/j.jmmm.2012.01.041

Google Scholar

[41] A.K. Pathak, I. Dubenko, S. Stadler, N. Ali, Temperature and field induced strain in polycrystalline Ni50Mn35In15-xSix magnetic shape memory Heusler alloys, J. Alloy. Compd. 509 (2011) 1106-1110.

DOI: 10.1016/j.jallcom.2010.09.174

Google Scholar

[42] S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa and A. Planes, Magnetization easy axis in martensitic Heusler alloys estimated by strain measurements under magnetic field, Appl. Phys. Lett. 91 (2007) 251915-1-3.

DOI: 10.1063/1.2817754

Google Scholar

[43] J. Liu, S. Aksoy, N. Scheerbaum, M. Acet and O. Gutfleisch, Large magnetostrain in polycrystalline Ni-Mn-In-Co, Appl. Phys. Lett. 95 (2009) 232515-1-3.

DOI: 10.1063/1.3273853

Google Scholar

[44] A.N. Vasil'ev, E.I. Estrin, V.V. Khovailo, A.D. Bozhko, R.A. Ischuk, M. Matsumoto, T. Takagi and J. Tani, Dilatometric study of Ni2+xMn1-xGa under magnetic field, Int. J. Appl. Electrom. 12 (2000) 35-40.

DOI: 10.3233/jae-2000-198

Google Scholar

[45] J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama and Y.I. Chumlyakov, Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys, Acta Mater. 60 (2012).

DOI: 10.1016/j.actamat.2012.07.040

Google Scholar

[46] K. Niitsu, X. Xu, R. Y. Umetsu and R. Kainuma, Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy, Appl. Phys. Lett. 103 (2013) 242406-1-3.

DOI: 10.1063/1.4840336

Google Scholar

[47] L. Chen, F.X. Hu, J. Wang, J.L. Zhao, J.R. Sun, B.G. Shen, J.H. Yin and L.Q. Pan, Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni45Co5Mn36. 6In13. 4 alloys, J. Phys. D: Appl. Phys. 44 (2011).

DOI: 10.1088/0022-3727/44/8/085002

Google Scholar

[48] L. Porcar, D. Bourgault and P. Courtois, Large piezoresistance and magnetoresistance effects on Ni45Co5Mn37. 5In12. 5 single crystal, Appl. Phys. Lett. 100 (2012) 152405-1-3.

DOI: 10.1063/1.3701170

Google Scholar

[49] I. Dincer, E. Yuzuak and Y. Elerman, The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16, J. Alloy. Compd. 509 (2011) 794-799.

DOI: 10.1016/j.jallcom.2010.09.092

Google Scholar

[50] M.K. Chattopadhyay, V.K. Sharma, A. Chouhan, P. Arora and S. B. Roy Combined effect of hydrostatic pressure and magnetic field on the martensitic transition in the Ni49CuMn34In16 alloy, Phys. Rev. B 84 (2011) 064417-1-9.

Google Scholar

[51] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra, A. Khandelwal, R.K. Meena and S.B. Roy, Scaling of the isothermal entropy change and magnetoresistance in Ni-Mn-In based off-stoichiometric Heusler alloys, Eur. Phys. J. Appl. Phys. 62 (2013).

DOI: 10.1051/epjap/2013120256

Google Scholar

[52] S. Pramanick, S. Chatterjee, D. Venkateshwarlu, V. Ganesan, S.K. De, S. Giri, S. Majumdar, Revival of martensitic instability in Ga doped Ni-Mn-In alloys, Intermetallics 42 (2013) 56-61.

DOI: 10.1016/j.intermet.2013.05.007

Google Scholar

[53] V.K. Sharma, M.K. Chattopadhyay, A. Khandelwal and S. B. Roy, Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy, Phys. Rev. B 82 (2010) 172411-1-4.

Google Scholar

[54] V.K. Sharma, M.K. Chattopadhyay, K.H.B. Shaeb, A. Chouhan and S.R. Roy, Large magnetoresistance in Ni50Mn34In16 alloy, Appl. Phys. Lett. 89 (2006) 222509-1-3.

DOI: 10.1063/1.2399365

Google Scholar

[55] K.A. Gschneidner, Jr. and V.K. Pecharsky, Magnetocaloric materials, Annu. Rev. Mater. Sci. 30 (2000) 387-429.

DOI: 10.1146/annurev.matsci.30.1.387

Google Scholar

[56] K.A. Gschneidner Jr, V.K. Pecharsky and A.O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68 (2005) 1479-1539.

DOI: 10.1088/0034-4885/68/6/r04

Google Scholar

[57] E. Bruck, O. Tegus, D. T. Cam Thanh, T. Trung Nguyen and K. H. J. Buschow, A Review on Mn Based Materials for Magnetic Refrigeration: Structure and Properties, Int. J. Refrig. 31 (2008) 763–770.

DOI: 10.1016/j.ijrefrig.2007.11.013

Google Scholar

[58] K. A. Gschneidner, Jr. and V. K. Pecharsky, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int. J. Refrig. 31 (2008) 945-961.

DOI: 10.1016/j.ijrefrig.2008.01.004

Google Scholar

[59] V.D. Buchelnikov and V.V. Sokolovskiy, Magnetocaloric Effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler Alloys, Phys. Met. Metallogr. 112 (2011) 633-665.

DOI: 10.1134/s0031918x11070052

Google Scholar

[60] F.S. Liu, Q.B. Wang, W.Q. Ao, Y.J. Yu, L.C. Pan, J.Q. Li, Magnetocaloric effect in high Ni content Ni52Mn48-xInx alloys under low field change, J. Magn. Magn. Mater. 324 (2012) 514-518.

DOI: 10.1016/j.jmmm.2011.08.031

Google Scholar

[61] V.K. Sharma, M.K. Chattopadhyay and S.B. Roy, The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy, J. Phys. Condens. Mat. 23 (2011) 366001-1-10.

DOI: 10.1088/0953-8984/23/36/366001

Google Scholar

[62] A.P. Kazakov, V.N. Prudnikov, A.B. Granovsky, A.P. Zhukov, J. Gonzalez, I. Dubenko, A.K. Pathak, S. Stadler and N. Ali, Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys, Appl. Phys. Lett. 98 (2011).

DOI: 10.1063/1.3574088

Google Scholar

[63] V.D. Buchelnikov, M.O. Drobosyuk, E.A. Smyshlyaev, O.O. Pavlukhina, A.V. Andreevskikh, V.V. Sokolovskiy, S.V. Taskaev, V.V. Koledov, V.G. Shavrov, V.V. Khovaylo and A.A. Fediy, The Magnetocaloric effect in Ni-Mn-X (X=Ga, In) Heusler alloys and manganites with magnetic transition close to room temperature, Sol. St. Phen. 168-169 (2011).

DOI: 10.4028/www.scientific.net/ssp.168-169.165

Google Scholar

[64] Y.I. Spichkin, A.M. Tishin, D.B. Kopeliovich, A.Y. Malyshev, Direct measurements of the magnetocaloric effect: realization and results, in: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature (Des Moines, USA), International Institute of Refrigeration, Commissions B2, A1 with E2, Paris, France, 2009, pp.173-180.

Google Scholar

[65] R. Das, A. Perumal and A. Srinivasan, Evaluation of Ni–Mn–In–Si alloys for magnetic refrigeration application, IEEE T. Magn. 47 (2011) 2463-2465.

DOI: 10.1109/tmag.2011.2159365

Google Scholar

[66] R. Das, A. Perumal and A. Srinivasan, Effect of particle size on the magneto-caloric properties of Ni51Mn34In14Si1 alloy, J. Alloy. Compd. 572 (2013) 192-198.

DOI: 10.1016/j.jallcom.2013.03.235

Google Scholar

[67] A.Y. Takeuchi, C.E. Guimarães, E.C. Passamani and C. Larica, Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34. 5In15. 5 Heusler-type alloy, J. Appl. Phys. 111 (2012) 103902-1-6.

DOI: 10.1063/1.4716033

Google Scholar

[68] I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, A. Granovsky, A. Zhukov and N. Ali, The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34. 8In14. 2B, Appl. Phys. Lett. 100 (2012).

DOI: 10.1063/1.4714539

Google Scholar

[69] I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, A. Granovsky, A. Zhukov and N. Ali, The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni-Mn-In-B Heusler alloy, IEEE T. Magn. 48 (2012).

DOI: 10.1109/tmag.2012.2197596

Google Scholar

[70] P.A. Bhobe, K.R. Priolkar and A.K. Nigam, Room temperature magnetocaloric effect in Ni-Mn-In, Appl. Phys. Lett. 91 (2007) 242503-1-3.

DOI: 10.1063/1.2823601

Google Scholar

[71] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra and S.B. Roy, Elevating the temperature regime of the large magnetocaloric effect in a Ni-Mn-In alloy towards room temperature, J. Phys. D: Appl. Phys. 44 (2011) 145002-1-5.

DOI: 10.1088/0022-3727/44/14/145002

Google Scholar

[72] S.M. Benford and G.V. Brown, T-S diagram for gadolinium near the Curie temperature, J. Appl. Phys. 52 (1981) 2110-2112.

DOI: 10.1063/1.329633

Google Scholar

[73] V.K. Sharma, M.K. Chattopadhyay and S.B. Roy, Large inverse magnetocaloric effect in Ni50Mn34In16, J. Phys. D: Appl. Phys. 40 (2007) 1869-1873.

Google Scholar

[74] V. Sanchez-Alarcos, V. Recarte, J.I. Perez-Landazabal, J.R. Chapelon and J.A. Rodrıguez-Velamazan, Structural and magnetic properties of Cr-doped Ni-Mn-In metamagnetic shape memory alloys, J. Phys. D: Appl. Phys. 44 (2011) 395001-1-7.

DOI: 10.1088/0022-3727/44/39/395001

Google Scholar

[75] V.K. Sharma, M.K. Chattopadhyay, S.K. Nath, K.J.S. Sokhey, R. Kumar, P. Tiwari and S.B. Roy, The effect of substitution of Mn by Fe and Cr on the martensitic transition in the Ni50Mn34In16 alloy, J. Phys. Condens. Mat. 22 (2010) 486007-1-11.

DOI: 10.1088/0953-8984/22/48/486007

Google Scholar

[76] V.V. Khovaylo, K.P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V.V. Koledov, V.G. Shavrov, G. Wang, E. Palacios, J. Bartolomé and R. Burriel, Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys, Phys. Rev. B 81 (2010).

DOI: 10.1103/physrevb.81.214406

Google Scholar

[77] X. Moya, Ll. Mañosa, A. Planes, S. Aksoy, M. Acet, E.F. Wassermann and T. Krenke, Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape-memory alloy, Phys. Rev. B 75 (2007) 184412-1-5.

DOI: 10.1103/physrevb.75.184412

Google Scholar

[78] F. Guillou, P. Courtois, L. Porcar, P. Plaindoux, D. Bourgault and V. Hardy, Calorimetric investigation of the magnetocaloric effect in Ni45Co5Mn37. 5In12. 5, J. Phys. D: Appl. Phys. 45 (2012) 255001-1-7.

DOI: 10.1088/0022-3727/45/25/255001

Google Scholar

[79] M. Kataoka, R.Y. Umetsu, W. Ito, T. Kanomata, R. Kainuma, Repulsive magneto-structural interaction in the ferromagnetic shape memory alloys Ni2Mn1+xIn1-x, J. Magn. Magn. Mater. 327 (2013) 125-131.

DOI: 10.1016/j.jmmm.2012.09.023

Google Scholar

[80] R.Y. Umetsu, W. Ito, K. Ito, K. Koyama, A. Fujita, K. Oikawa, T. Kanomata, R. Kainuma, K. Ishida, Anomaly in entropy change between parent and martensite phases in the Ni50Mn34In16 Heusler alloy, Scripta Mater. 60 (2009) 25-28.

DOI: 10.1016/j.scriptamat.2008.08.022

Google Scholar

[81] L.H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Della Torre, Y. Jin, Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy, J. Alloy. Compd. 525 (2012) 34-38.

DOI: 10.1016/j.jallcom.2012.02.062

Google Scholar

[82] M. Ghahremani, H. EIBidweihy, L. Bennett, E. D. Torre, M. Zou, and F. Johnson, Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy, J. Appl. Phys. 113 (2013) 17A943-1-3.

DOI: 10.1063/1.4801739

Google Scholar

[83] M.A. Zagrebin, V.D. Buchelnikov, K.I. Kostromitin, Thermodynamic analysis of possible phase states in Ni50Mn35In15 Heusler alloy, Phys. Status Solidi C 11 (2014) 1144-1148.

DOI: 10.1002/pssc.201300713

Google Scholar

[84] V.V. Sokolovskiy, V.D. Buchelnikov, K.I. Kostromitin, S.V. Taskaev, P. Entel, Modeling of the Magnetocaloric Effect in Heusler Ni-Mn-X (X = In, Sn, Sb) Alloys Using Antiferromagnetic Five-State Potts Model with Competing Interactions, Mater. Res. Soc. Symp. P. 1310 (2011).

DOI: 10.1557/opl.2011.632

Google Scholar

[85] V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki and T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys, J. Phys. D: Appl. Phys. 44 (2011).

DOI: 10.1088/0022-3727/44/6/064012

Google Scholar

[86] A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and Its Applications, IOP Series in Condensed Matter Physics, edited by J. M. D. Coey, D. R. Tilley, and D. R. Vij IOP, Bristol, (2003).

Google Scholar

[87] V.V. Sokolovskiy, V.D. Buchelnikov, and P. Entel, Optimization of the Magnetocaloric Effect in Ni-Mn-In Alloys: A Theoretical Study, J. Exp. Theor. Phys. 115 (2012) 662-665.

DOI: 10.1134/s1063776112090142

Google Scholar

[88] V.V. Sokolovskiy, V.D. Buchelnikov, S.V. Taskaev, V.V. Khovaylo, M. Ogura and P. Entel, Quaternary Ni-Mn-In-Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?, J. Phys. D: Appl. Phys. 46 (2013) 305003-1-9.

DOI: 10.1088/0022-3727/46/30/305003

Google Scholar

[89] J. Bai, N. Xu, J. -M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, First-principles investigations of crystallographic, magnetic, and electronic structures in Ni2XIn (X = Mn, Fe, and Co), J. Appl. Phys. 112 (2012) 114901-1-6.

DOI: 10.1063/1.4767331

Google Scholar

[90] V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn, Sb), Phys. Rev. B 78 (2008).

DOI: 10.1103/physrevb.78.184427

Google Scholar

[91] Chun-Mei Li, Hu-Bin Luo, Qing-Miao Hu, Rui Yang, Borje Johansson, and Levente Vitos, Role of magnetic and atomic ordering in the martensitic transformation of Ni-Mn-In from a first-principles study, Phys. Rev. B 86 (2012) 214205-1-7.

DOI: 10.1103/physrevb.86.214205

Google Scholar

[92] C.L. Tan, Y.W. Huang, X. H. Tian, J. X. Jiang, and W. Cai, Origin of magnetic properties and martensitic transformation of Ni-Mn-In magnetic shape memory alloys, Appl. Phys. Lett. 100 (2012) 132402-1-3.

DOI: 10.1063/1.3697637

Google Scholar

[93] J. Bai, N. Xu, J. -M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Defect formation energy and magnetic properties of off-stoichiometric Ni-Mn-In alloys by first-principles calculations, J. Appl. Phys. 113 (2013) 174901-1-6.

DOI: 10.1063/1.4803139

Google Scholar

[94] K.R. Priolkar, P.A. Bhobe, D.N. Lobo, S.W. D'Souza, S.R. Barman, Aparna Chakrabarti, and S. Emura, Antiferromagnetic exchange interactions in the Ni2Mn1. 4In0. 6 ferromagnetic Heusler alloy, Phys. Rev. B 87 (2013) 144412-1-6.

Google Scholar

[95] P. Klaer, H.C. Herper, P. Entel, R. Niemann, L. Schultz, S. Fähler, and H.J. Elmers, Electronic structure of the austenitic and martensitic state of magnetocaloric Ni-Mn-In Heusler alloy films, Phys. Rev. B, 88 (2013) 174414-1-8.

DOI: 10.1103/physrevb.88.174414

Google Scholar

[96] A. Ayuela, J. Enkovaara, and R. M. Nieminen, Ab initio study of tetragonal variants in Ni2MnGa alloy, J. Phys. Condens. Mat. 14 (2002) 5325-5336.

DOI: 10.1088/0953-8984/14/21/307

Google Scholar