[1]
A. Paiva, M.A. Savi, An overview of constitutive models for shape memory alloys, in: Mathematical Problems in Engineering, Hindawi Publishing Corporation, 2006, Article ID 56876, pp.1-30.
DOI: 10.1155/mpe/2006/56876
Google Scholar
[2]
M. Brocca, L.C. Brinson, Z.P. Bazant, Three dimensional constitutive model for shape memory alloys based on microplane model, J. Mech. Physics Solids 50 (2002) 1051-1077.
DOI: 10.1016/s0022-5096(01)00112-0
Google Scholar
[3]
K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Research Mechanica 18 (1986) 251-263.
Google Scholar
[4]
C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, Journal of Intelligent Material Systems and Structures 1 (1990) 207-234.
DOI: 10.1177/1045389x9000100205
Google Scholar
[5]
L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, Journal of Intelligent Material Systems and Structures 4 (1993).
DOI: 10.1177/1045389x9300400213
Google Scholar
[6]
S. Leclercq, C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of Mechanics and Physics of Solids 44 (1996) 953-980.
DOI: 10.1016/0022-5096(96)00013-0
Google Scholar
[7]
A.E. Volkov, M.E. Evard, Modeling of martensite accommodation effect on mechanical behaviour of shape memory alloys. J. of Eng. Mater. and Technol. 121 (1999) 102-104.
DOI: 10.1115/1.2815989
Google Scholar
[8]
A.E. Volkov, F. Casciati, Simulation of dislocation and transformation plasticity in shape memory alloy polycristals, in: F. Auricchio, L. Faravelli etc. (Eds. ) Shape memory alloys. Advances in modeling and applications, Barcelona, 2001, pp.88-104.
Google Scholar
[9]
S.S. Pryakhin, V.V. Rubanik Jr, Mathematical relations in model of thermomechanical behavior of shape memory alloys, in: Perspective technologies and control methods, Izd-vo VGTU, Vitebsk, 2009, pp.360-383 [in Russian].
Google Scholar
[10]
A.A. Ilyushin, Continuum mechanics: Textbook, Izd-vo MGU, Moscow, 1990. [in Russian].
Google Scholar
[11]
J.A. DeCastro, K.J. Melcher, R.D. Noebe, D.J. Gaydosh, Development of a numerical model for high-temperature shape memory alloys, Smart Mater. Struct. 16 (2007) 2080-(2090).
DOI: 10.1088/0964-1726/16/6/011
Google Scholar
[12]
Information on http: /www. christian. boller@m. dasa. de.
Google Scholar
[13]
S.S. Pryakhin, V.V. Rubanik Jr, Concept of separation of internal variable components for description of thermomechanical behavior of shape memory alloy in alternating-sign loadings, in: Multipurpose materials in modern techniques and methods of their production. Materials for micro- and nanoelectronics. Proceedings of the Conference Modern techniques and technologies of manufacture and processing of materials, Book 1. October 19-21 2009, Minsk, FTI NAN of Belarus, 2009, pp.190-195.
Google Scholar
[14]
T.W. Duerig, A.R. Pelton, Ti-Ni shape memory alloys, in: G.W.R. Boyer and E.W. Collings (Eds. ), Material Properties Handbook: Titanium Alloys, American Society for Metals, Material Park, OH, 1994, pp.1035-1048.
Google Scholar
[15]
H.J. Lee, J.J. Lee, J.S. Huh, A simulation study on the thermal buckling behavior of laminated composite shells with embedded shape memory alloy (SMA) wires, Composite Structures 47 (1999) 463-469.
DOI: 10.1016/s0263-8223(00)00020-9
Google Scholar
[16]
V.A. Postnov, Theory of plasticity and creep: Textbook, Izd-vo Leningradskogo korablestroitel'nogo instituta, Leningrad, 1975. [in Russian].
Google Scholar
[17]
N.N. Malinin, Applied plasticity and creep theory, Mashinostroenie, Moscow, 1968 [in Russian].
Google Scholar
[18]
B. Raniecki, C. Lexcellent., K. Tanaka, Thermodynamic models of pseudoelastic behavior of shape memory alloys, Archives of Mechanics - Archiwum Mechaniki Stosowanej 44 (1992) 261-284.
Google Scholar
[19]
M.A. Khusainov, O.A. Malukhina, V.N. Belyakov, O.V. Letenkov, Investigation of alloy spherical sheaths with shape memory effect (SME), in: Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies Asilomar Conference Center, Pacific Grove, California, USA, 1997, pp.215-219.
Google Scholar