[1]
F. Baumgart, J. Jorde, H. -G. Reiss, Memory Legierungen-Eigenschaften, phänomenologische Theorie und Anwendungen, Techn. Mitt. Krupp Forschungsberighte. 34 (1976) 1-16.
Google Scholar
[2]
D.C. Lagoudas, Z. Bo, M.A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of composite materials and structures 3 (1996) 153-179.
DOI: 10.1080/10759419608945861
Google Scholar
[3]
C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials. J. of Intelligent Materials Systems and Structures 1 (1990) 207-234.
DOI: 10.1177/1045389x9000100205
Google Scholar
[4]
T.J. Pence, Mathematical modeling of shape memory alloys, Manside Project: Workshop Proc. (1999) II-45-II-57.
Google Scholar
[5]
F. Trochu, P. Terriault, Nonlinear modeling of hysteresis material laws by dual kriging and application, Comput. Methods Appl. Mech. Eng. 151 (1998) 545-558.
DOI: 10.1016/s0045-7825(97)00165-5
Google Scholar
[6]
K. Tanaka, A termomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res Mech. 18 (1986) 251-263.
Google Scholar
[7]
K. Tanaka, S. Nagaki, A thermomechanical description of materials with internal variables in the process of phase transition, Ingenieur-Archiv. 51 (1982) 287-299.
DOI: 10.1007/bf00536655
Google Scholar
[8]
K. Tanaka, F.D. Fischer, Determination of equation for shape memory alloys. Micromechanical investigations, J. Soc. Mater. Sci. Japan. 39 (1990) 883-887.
Google Scholar
[9]
K. Tanaka, R, Iwasaki, A phenomenological theory of transformation superplasticity, Eng. Fracture Mech. 21 (1985) 709-720.
DOI: 10.1016/0013-7944(85)90080-3
Google Scholar
[10]
A.E. Volkov, V. A Likhachev, A.I. Razov, Plasticity mechanics of materials with phase-transitions, Vestnik Leningrad. Uni. Seriya Mat. Mekh. Astronom. 4 (1984) 30-37 [in Russian].
Google Scholar
[11]
C. Liang, C.A. Rogers, A multi-dimensional constitutive model for shape memory alloys, J. Eng. Math. 26 (1992) 429-443.
DOI: 10.1007/bf00042744
Google Scholar
[12]
A.A. Movchan, Some manifestations of oriented transform ability of shape-memory alloys, J. App. Mech. and Tech. Phys. 37 (1996) 926-933.
DOI: 10.1007/bf02369274
Google Scholar
[13]
L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intelligent Mater. Systems and Structures 4 (1993).
DOI: 10.1177/1045389x9300400213
Google Scholar
[14]
D.C. Lagoudas, Z. Bo, M.A. Qidwai, A Unified Thermodynamic Constitutive Model for SMA and Finite Element Analysis of Active Metal Matrix Composites, Mech. of Composite Materials and Structures 4 (1996) 153-179.
DOI: 10.1002/(sici)1234-986x(199606)3:2<153::aid-mcm36>3.3.co;2-j
Google Scholar
[15]
A.C. Souza, E.N. Mamiya, N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, Europ. J. Mech. A / Solids 17 (1998) 789-806.
DOI: 10.1016/s0997-7538(98)80005-3
Google Scholar
[16]
F. Auricchio, L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications, Int. J. Numerical Methods in Engineering 61 (2004) 716–737.
DOI: 10.1002/nme.1087
Google Scholar
[17]
J.G. Boyd, D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part 2. The SMA composite material, Int. J. Plasticity 12 (1996) 843-873.
DOI: 10.1016/s0749-6419(96)00031-9
Google Scholar
[18]
M. Huang, L.C. Brinson, A multivariant model for single crystal shape memory alloy behaviour, J. Mech. Phys. Solids. 46 (1998) 1379-1409.
DOI: 10.1016/s0022-5096(97)00080-x
Google Scholar
[19]
E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, J. de Physique IV 6 (1996) C1-277-292.
DOI: 10.1051/jp4:1996127
Google Scholar
[20]
Q. -P. Sun, C. Lexcellent, On the unified micromechanics constitutive description of one-way and two-way shape memory effects, J. de Physique IV 6 (1996) C1-367-375.
DOI: 10.1051/jp4:1996135
Google Scholar
[21]
M. Huang, X. Gao, L.C. Brinson, A multivariant model for SMAs Part2. Polycrystal model, Int. J. of Plasticity 16 (2000) 1371-1390.
DOI: 10.1016/s0749-6419(00)00014-0
Google Scholar
[22]
F.A. Nae, Y. Matsuzaki, T. Ikeda, Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling, Smart Materials and Structures 12 (2003) 6-17.
DOI: 10.1088/0964-1726/12/1/302
Google Scholar
[23]
M.E. Evard, A.E. Volkov, Modeling of martensite accommodation effect on mechanical behaviour of shape memory alloys. J. Eng. Mater. and Technol. 121(1999) 102–104.
DOI: 10.1115/1.2815989
Google Scholar
[24]
A.E. Volkov, F. Casciati, Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals, in: F. Auricchio, L. Faravelli, G. Magonette and V. Torra (Eds. ) Shape Memory Alloys. Advances in Modelling and Applications, Barcelona, 2001, pp.88-104.
Google Scholar
[25]
M.E. Evard, A.E. Volkov, A theoretical study of the plastic deformation in titanium-nickel shape memory alloy, in: F. Troshu, V. Brailovski, A. Galibois (Eds. ), Proc. of Int. Symp. on Shape Memory Alloys: Fundamentals, Modelling and Industrial Applications, 1999, p.177.
Google Scholar
[26]
M.E. Evard, A.E. Volkov, O.V. Bobeleva, An approach for modelling fracture of shape memory alloy parts, Smart Structures and Systems 2 (2006) 357-363.
DOI: 10.12989/sss.2006.2.4.357
Google Scholar
[27]
S.P. Belyaev, I.V. Inochkina, A.E. Volkov, Modeling of vibration control, damping and isolation by shape memory alloy parts, in: F. Casciati(Ed. ), Proc. 3-rd World Conference on Structural Control, 2003, p.779 – 789.
Google Scholar
[28]
A.E. Volkov, D.S. Dubilet, Calculation of the efficiency of shape memory alloys application for damping and isolation of structures, J. Composite Mech. and Design 15 (2009) 505-511.
Google Scholar
[29]
A.E. Volkov, M.E. Evard, A.V. Vikulenkov, E.S. Uspenskiy, Simulation of vibration isolation by shape memory alloy springs using a microstructural model of shape memory alloy, Materials Science Forum 738-739 (2013) 150-154.
DOI: 10.4028/www.scientific.net/msf.738-739.150
Google Scholar
[30]
A.E. Volkov, M.E. Evard, K.V. Red'kina, A.V. Vikulenkov, V.P. Makarov, A.A. Moisheev, N.A. Makarchev, E.S. Uspenskiy, Simulation of payload vibration protection by shape memory alloy parts, J. Mat. Eng. Perform. 23 (2014) 2719-2726.
DOI: 10.1007/s11665-014-1084-7
Google Scholar
[31]
A. E. Volkov, A. S. Kukhareva, Calculation of the stress–strain state of a TiNi cylinder subjected to cooling under axial force and unloading, Bulletin of the Russian Academy of Sciences: Physics 72 (2008) 1267–1270.
DOI: 10.3103/s106287380809027x
Google Scholar
[32]
M. Nishida, T. Nishiura, H. Kawano, T. Imamura, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part I. Morphological and crystallographic studies of variant selection rule, Philosophical. Magazine 92 (2012) 2215–2233.
DOI: 10.1080/14786435.2012.669858
Google Scholar
[33]
M. Nishida, E. Okunishi, T. Nishiura, H. Kawano, T. Imamura, S. Ii,T. Hara, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part II. Characteristic interface structures between habit plane variants, Philosophical. Magazine 92 (2012).
DOI: 10.1080/14786435.2012.669860
Google Scholar
[34]
T. Imamura, T. Nishiura, H. Kawano, H. Hosoda, M. Nishida, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory, Philosophical Magazine 92 (2012).
DOI: 10.1080/14786435.2012.669859
Google Scholar
[35]
K. Madangopal, J. Singh,S. Benerjee. Self-accommodation in Ni-Ti shape memory alloys, Scripta Metallurgica 25 (1991) 2153–2158.
DOI: 10.1016/0956-716x(91)90291-8
Google Scholar
[36]
R.J. Salzbrenner, M. Cohen, On the thermodynamics of thermoelastic martensitic transformations, Acta Metallurgica 27 (1979) 739–748.
DOI: 10.1016/0001-6160(79)90107-x
Google Scholar
[37]
K.M. Knowles, D.A. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 20 (1981) 101-110.
DOI: 10.1016/0001-6160(81)90091-2
Google Scholar
[38]
S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behaviour in a Ti-50. 6at. %Ni alloy, Scripta Metallurgica 15 (1981) 287-292.
DOI: 10.1016/0036-9748(81)90346-x
Google Scholar
[39]
T. Saburi, T. Tatsumi, S. Nenno, Effect of heat treatment on mechanical behaviour of TiNi alloys, J. de Physique 43 (1982) C4-261-266.
DOI: 10.1051/jphyscol:1982435
Google Scholar
[40]
S. Belyaev, N. Resnina, A. Sibirev, Accumulation of residual strain in TiNi alloy during thermal cycling, J. Mater. Eng. and Perform. 23 (2014) 2339-2342.
DOI: 10.1007/s11665-014-0982-z
Google Scholar