Modeling of Deformation and Functional Properties of Shape Memory Alloys Based on a Microstructural Approach

Article Preview

Abstract:

This microstructural model of the functional-mechanical behavior of shape memory alloys (SMA) includes a description of the reversible phase deformation, microplastic deformation due to the accommodation of martensite and the evolution of the deformation defects. The laws of these phenomena are formulated in terms of the generalized thermodynamic forces. The microplastic flow rule accounts for isotropic and kinematic hardening, which are related to the accumulation of the deformation defects. The model gives a good description both of reversible and irreversible deformation under one-side or cyclic thermomechanical loading of SMA and opens a way for the fatigue life prediction. The model can be applied for solving of the mechanical problems for SMA parts such as dampers or base isolators used in seismic protection devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-37

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Baumgart, J. Jorde, H. -G. Reiss, Memory Legierungen-Eigenschaften, phänomenologische Theorie und Anwendungen, Techn. Mitt. Krupp Forschungsberighte. 34 (1976) 1-16.

Google Scholar

[2] D.C. Lagoudas, Z. Bo, M.A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of composite materials and structures 3 (1996) 153-179.

DOI: 10.1080/10759419608945861

Google Scholar

[3] C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials. J. of Intelligent Materials Systems and Structures 1 (1990) 207-234.

DOI: 10.1177/1045389x9000100205

Google Scholar

[4] T.J. Pence, Mathematical modeling of shape memory alloys, Manside Project: Workshop Proc. (1999) II-45-II-57.

Google Scholar

[5] F. Trochu, P. Terriault, Nonlinear modeling of hysteresis material laws by dual kriging and application, Comput. Methods Appl. Mech. Eng. 151 (1998) 545-558.

DOI: 10.1016/s0045-7825(97)00165-5

Google Scholar

[6] K. Tanaka, A termomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res Mech. 18 (1986) 251-263.

Google Scholar

[7] K. Tanaka, S. Nagaki, A thermomechanical description of materials with internal variables in the process of phase transition, Ingenieur-Archiv. 51 (1982) 287-299.

DOI: 10.1007/bf00536655

Google Scholar

[8] K. Tanaka, F.D. Fischer, Determination of equation for shape memory alloys. Micromechanical investigations, J. Soc. Mater. Sci. Japan. 39 (1990) 883-887.

Google Scholar

[9] K. Tanaka, R, Iwasaki, A phenomenological theory of transformation superplasticity, Eng. Fracture Mech. 21 (1985) 709-720.

DOI: 10.1016/0013-7944(85)90080-3

Google Scholar

[10] A.E. Volkov, V. A Likhachev, A.I. Razov, Plasticity mechanics of materials with phase-transitions, Vestnik Leningrad. Uni. Seriya Mat. Mekh. Astronom. 4 (1984) 30-37 [in Russian].

Google Scholar

[11] C. Liang, C.A. Rogers, A multi-dimensional constitutive model for shape memory alloys, J. Eng. Math. 26 (1992) 429-443.

DOI: 10.1007/bf00042744

Google Scholar

[12] A.A. Movchan, Some manifestations of oriented transform ability of shape-memory alloys, J. App. Mech. and Tech. Phys. 37 (1996) 926-933.

DOI: 10.1007/bf02369274

Google Scholar

[13] L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intelligent Mater. Systems and Structures 4 (1993).

DOI: 10.1177/1045389x9300400213

Google Scholar

[14] D.C. Lagoudas, Z. Bo, M.A. Qidwai, A Unified Thermodynamic Constitutive Model for SMA and Finite Element Analysis of Active Metal Matrix Composites, Mech. of Composite Materials and Structures 4 (1996) 153-179.

DOI: 10.1002/(sici)1234-986x(199606)3:2<153::aid-mcm36>3.3.co;2-j

Google Scholar

[15] A.C. Souza, E.N. Mamiya, N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, Europ. J. Mech. A / Solids 17 (1998) 789-806.

DOI: 10.1016/s0997-7538(98)80005-3

Google Scholar

[16] F. Auricchio, L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications, Int. J. Numerical Methods in Engineering 61 (2004) 716–737.

DOI: 10.1002/nme.1087

Google Scholar

[17] J.G. Boyd, D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part 2. The SMA composite material, Int. J. Plasticity 12 (1996) 843-873.

DOI: 10.1016/s0749-6419(96)00031-9

Google Scholar

[18] M. Huang, L.C. Brinson, A multivariant model for single crystal shape memory alloy behaviour, J. Mech. Phys. Solids. 46 (1998) 1379-1409.

DOI: 10.1016/s0022-5096(97)00080-x

Google Scholar

[19] E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, J. de Physique IV 6 (1996) C1-277-292.

DOI: 10.1051/jp4:1996127

Google Scholar

[20] Q. -P. Sun, C. Lexcellent, On the unified micromechanics constitutive description of one-way and two-way shape memory effects, J. de Physique IV 6 (1996) C1-367-375.

DOI: 10.1051/jp4:1996135

Google Scholar

[21] M. Huang, X. Gao, L.C. Brinson, A multivariant model for SMAs Part2. Polycrystal model, Int. J. of Plasticity 16 (2000) 1371-1390.

DOI: 10.1016/s0749-6419(00)00014-0

Google Scholar

[22] F.A. Nae, Y. Matsuzaki, T. Ikeda, Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling, Smart Materials and Structures 12 (2003) 6-17.

DOI: 10.1088/0964-1726/12/1/302

Google Scholar

[23] M.E. Evard, A.E. Volkov, Modeling of martensite accommodation effect on mechanical behaviour of shape memory alloys. J. Eng. Mater. and Technol. 121(1999) 102–104.

DOI: 10.1115/1.2815989

Google Scholar

[24] A.E. Volkov, F. Casciati, Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals, in: F. Auricchio, L. Faravelli, G. Magonette and V. Torra (Eds. ) Shape Memory Alloys. Advances in Modelling and Applications, Barcelona, 2001, pp.88-104.

Google Scholar

[25] M.E. Evard, A.E. Volkov, A theoretical study of the plastic deformation in titanium-nickel shape memory alloy, in: F. Troshu, V. Brailovski, A. Galibois (Eds. ), Proc. of Int. Symp. on Shape Memory Alloys: Fundamentals, Modelling and Industrial Applications, 1999, p.177.

Google Scholar

[26] M.E. Evard, A.E. Volkov, O.V. Bobeleva, An approach for modelling fracture of shape memory alloy parts, Smart Structures and Systems 2 (2006) 357-363.

DOI: 10.12989/sss.2006.2.4.357

Google Scholar

[27] S.P. Belyaev, I.V. Inochkina, A.E. Volkov, Modeling of vibration control, damping and isolation by shape memory alloy parts, in: F. Casciati(Ed. ), Proc. 3-rd World Conference on Structural Control, 2003, p.779 – 789.

Google Scholar

[28] A.E. Volkov, D.S. Dubilet, Calculation of the efficiency of shape memory alloys application for damping and isolation of structures, J. Composite Mech. and Design 15 (2009) 505-511.

Google Scholar

[29] A.E. Volkov, M.E. Evard, A.V. Vikulenkov, E.S. Uspenskiy, Simulation of vibration isolation by shape memory alloy springs using a microstructural model of shape memory alloy, Materials Science Forum 738-739 (2013) 150-154.

DOI: 10.4028/www.scientific.net/msf.738-739.150

Google Scholar

[30] A.E. Volkov, M.E. Evard, K.V. Red'kina, A.V. Vikulenkov, V.P. Makarov, A.A. Moisheev, N.A. Makarchev, E.S. Uspenskiy, Simulation of payload vibration protection by shape memory alloy parts, J. Mat. Eng. Perform. 23 (2014) 2719-2726.

DOI: 10.1007/s11665-014-1084-7

Google Scholar

[31] A. E. Volkov, A. S. Kukhareva, Calculation of the stress–strain state of a TiNi cylinder subjected to cooling under axial force and unloading, Bulletin of the Russian Academy of Sciences: Physics 72 (2008) 1267–1270.

DOI: 10.3103/s106287380809027x

Google Scholar

[32] M. Nishida, T. Nishiura, H. Kawano, T. Imamura, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part I. Morphological and crystallographic studies of variant selection rule, Philosophical. Magazine 92 (2012) 2215–2233.

DOI: 10.1080/14786435.2012.669858

Google Scholar

[33] M. Nishida, E. Okunishi, T. Nishiura, H. Kawano, T. Imamura, S. Ii,T. Hara, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part II. Characteristic interface structures between habit plane variants, Philosophical. Magazine 92 (2012).

DOI: 10.1080/14786435.2012.669860

Google Scholar

[34] T. Imamura, T. Nishiura, H. Kawano, H. Hosoda, M. Nishida, Self-accommodation of B19' martensite in Ti-Ni shape memory alloys – Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory, Philosophical Magazine 92 (2012).

DOI: 10.1080/14786435.2012.669859

Google Scholar

[35] K. Madangopal, J. Singh,S. Benerjee. Self-accommodation in Ni-Ti shape memory alloys, Scripta Metallurgica 25 (1991) 2153–2158.

DOI: 10.1016/0956-716x(91)90291-8

Google Scholar

[36] R.J. Salzbrenner, M. Cohen, On the thermodynamics of thermoelastic martensitic transformations, Acta Metallurgica 27 (1979) 739–748.

DOI: 10.1016/0001-6160(79)90107-x

Google Scholar

[37] K.M. Knowles, D.A. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 20 (1981) 101-110.

DOI: 10.1016/0001-6160(81)90091-2

Google Scholar

[38] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behaviour in a Ti-50. 6at. %Ni alloy, Scripta Metallurgica 15 (1981) 287-292.

DOI: 10.1016/0036-9748(81)90346-x

Google Scholar

[39] T. Saburi, T. Tatsumi, S. Nenno, Effect of heat treatment on mechanical behaviour of TiNi alloys, J. de Physique 43 (1982) C4-261-266.

DOI: 10.1051/jphyscol:1982435

Google Scholar

[40] S. Belyaev, N. Resnina, A. Sibirev, Accumulation of residual strain in TiNi alloy during thermal cycling, J. Mater. Eng. and Perform. 23 (2014) 2339-2342.

DOI: 10.1007/s11665-014-0982-z

Google Scholar