Thermomechanical Treatment of TiNi Intermetallic-Based Shape Memory Alloys

Article Preview

Abstract:

Recent studies in the field of thermomechanical treatment (TMT) of Ti-Ni shape memory alloys are presented and discussed. The main problems of structure and phase transformations, and their effect on the Ti-Ni functional properties are stated. The structure formation and phase transformations are studied using TEM, XRD and DSC analyses, and the specific features of the nanostructures formed as a result of TMT are described. Algorithms for the calculation of the theoretical limit of recovery strain under the single-crystal and poly-crystal approaches (with and without texture) are proposed and experimentally validated for nanostructured SMA. Static functional properties (recovery strain and stress, parameters of superelasticity) and dynamic (fatigue) functional properties (multiple realization of stress-free shape memory, shape memory under stress, recovery stress generation-relaxation, superelastic mechanocycling) of the thermomechanically-treated Ti-Ni shape memory alloys are discussed in detail. The main attention is paid to the interrelations between the microstructure and the functional properties of the thermomechanically-treated Ti-Ni shape memory alloys.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] V. Brailovski, I. Y. Khmelevskaya, S. D. Prokoshkin et al., Foundations of heat and thermomechanical treatments and their effect on the structure and properties of titanium nickelide-based alloys, Physics of Metals and Metallography. 97 (2004).

Google Scholar

[2] V. Brailovski, S. D. Prokoshkin, P. Terriault et al., Shape memory alloy: Fundamentals, modeling and applications, ETS Publ. Montreal (2003).

Google Scholar

[3] R. Valiev, Materials science: Nanomaterial advantage, Nature, 419 (2002) 887-889.

DOI: 10.1038/419887a

Google Scholar

[4] X. Xu, and N. N. Thadhani, Shock synthesis and characterization of ultrafine grained NiTi shape memory alloy, Scripta Materialia, 44 (2001) 2477-2483.

DOI: 10.1016/s1359-6462(01)00920-4

Google Scholar

[5] E. V. Tatyanin, and V. G. Kurdyumov, Nucleation of the deformation induced amorphous phase at twin boundaries in TiNi alloy, Physics Status Solidi. 121 (1990) 455-9.

DOI: 10.1002/pssa.2211210212

Google Scholar

[6] J. Dutkiewicz, Plastic deformation of CuAlMn shape-memory alloys, Journal of Materials Science. 29 (1994) 6249-6254.

DOI: 10.1007/bf00354567

Google Scholar

[7] V. B. Fedorov, V. G. Kurdyumov, D. K. Khakimova et al., Effect of grain refinement during the plastic deformation of titanium nickelide, Dorl. Akad. Nauk. SSSR. 269 (1983) 885-888.

Google Scholar

[8] J. Koike, D. M. Parkin, and M. Nastasi, Crystal-to-amorphous transformation of NiTi induced by cold rolling, Journal of Materials Research. 5(1990) 1414-1418.

DOI: 10.1557/jmr.1990.1414

Google Scholar

[9] E. V. Tat'yanin, V. G. Kurdyumov, and V. B. Fedorov, Preparation of amorphous TiNi alloy by shear deformation under pressure. Physics of metals and Metallography. 62 (1986) 133-7.

Google Scholar

[10] Z. C. Li, X. K. Zhao, H. Zhang et al., Microstructure and superelasticity of severely deformed TiNi alloy, Materials Letters. 57 (2003) 1086-1090.

DOI: 10.1016/s0167-577x(02)00935-7

Google Scholar

[11] H. Nakayama, K. Tsuchiya, Y. Todaka et al., Partial amorphization of B2 type shape memory alloys by cold rolling, Journal of Metastable and Nanocrystalline Materials. 15-16 (2003) 283-288.

DOI: 10.4028/www.scientific.net/jmnm.15-16.283

Google Scholar

[12] H. Nakayama, K. Tsuchiya, and M. Umemoto, Crystal refinement and amorphisation by cold rolling in TiNi shape memory alloys, Scripta Materialia. 44 (2001) 1781-1785.

DOI: 10.1016/s1359-6462(01)00740-0

Google Scholar

[13] V. Brailovski, S. D. Prokoshkin, I. Y. Khmelevskaya et al., Structure and properties of the Ti-50. 0 at% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing, Materials Transactions. 47 (2006) 795-804.

DOI: 10.2320/matertrans.47.795

Google Scholar

[14] S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan et al., Structure and properties of severely cold-rolled and annealed Ti-Ni shape memory alloys, Materials Science and Engineering A. 481-482 (2008) 114-118.

DOI: 10.1016/j.msea.2007.02.150

Google Scholar

[15] S. D. Prokoshkin, V. Brailovski, A. V. Korotitskiy et al., Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe, Physics of Metals and Metallography. 110 (2010).

DOI: 10.1134/s0031918x10090127

Google Scholar

[16] T. W. Duerig, K. N. Melton, D. Stöckel et al., Engineering Aspects of Shape Memory Alloys, Butterworth-Heineman, London, (1990).

Google Scholar

[17] K. Otsuka, C. M. Wayman (Eds. ), Shape memory materials, Cambridge, (1998).

Google Scholar

[18] S. Miyazaki, S. Kimura, K. Otsuka et al., The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta Metallurgica. 18 (1984) 883-888.

DOI: 10.1016/0036-9748(84)90254-0

Google Scholar

[19] L. A. Monasevich (Ed. ), Shape memory alloys and their applications in medicine, Nauka, Novosibirsk, (1992).

Google Scholar

[20] T. Saburi, M. Yoshida, and S. Nenno, Deformation behavior of shape memory TiNi alloy crystals, Scripta Metallurgica. 18 (1984) 363-366.

DOI: 10.1016/0036-9748(84)90453-8

Google Scholar

[21] S. D. Prokoshkin, V. Brajlovski, S. Turenne et al., On the lattice parameters of the B19' martensite in binary Ti-Ni shape-memory alloys, Physics of Metals and Metallography. 96 (2003) 62-71.

Google Scholar

[22] S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski et al., On the lattice parameters of phases in binary Ti-Ni shape memory alloys, Acta Materialia. 52 (2004) 4479-4492.

DOI: 10.1016/j.actamat.2004.06.007

Google Scholar

[23] S. D. Prokoshkin, A. V. Korotitskiy, V. M. Gundyrev et al., Low-temperature X-ray diffraction study of martensite lattice parameters in binary Ti-Ni alloys, Materials Science and Engineering A. 481-482 (2008) 489-493.

DOI: 10.1016/j.msea.2006.12.209

Google Scholar

[24] K. Otsuka, T. Sawamura, and K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Physica Status Solidi (A) Appl. Research. 5 (1971) 457-470.

DOI: 10.1002/pssa.2210050220

Google Scholar

[25] V.M. Gundyrev, V. I. Zeldovich, and G. A. Sobyanina, Texture and thermal expansion anomalies of B19'-martensite in tensile deformed TiNi shape memory alloys, Textures Microstruct. 32 (1999) 71-81.

DOI: 10.1155/tsm.32.71

Google Scholar

[26] R. F. Hehemann, and G. D. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi, Scripta Metallurgica. 5 (1971) 801-805.

DOI: 10.1016/0036-9748(71)90167-0

Google Scholar

[27] J. Khalil-Allafi, W. W. Schmahl, M. Wagner et al., The influence of temperature on lattice parameters of coexisting phases in NiTi shape memory alloys - A neutron diffraction study, Materials Science and Engineering A. 378 (2004) 161-164.

DOI: 10.1016/j.msea.2003.11.062

Google Scholar

[28] Y. Kudoh, M. Tokonami, S. Miyazaki et al., Crystal structure of the martensite in Ti-49. 2 at. %Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metallurgica. 33 (1985) 2049-(2056).

DOI: 10.1016/0001-6160(85)90128-2

Google Scholar

[29] P. Lukáš, P. Šittner, D. Neov et al., R-phase phenomena in neutron diffraction investigations of thermomechanically loaded NiTi polycrystals, Materials Science Forum, 404-407 (2002) 835-840.

DOI: 10.4028/www.scientific.net/msf.404-407.835

Google Scholar

[30] Y. P. Mironov, and S. N. Kulkov, Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya. 8 (1994).

Google Scholar

[31] L. A. Monasevich, and Y. I. Paskal, Martensite-martensite transformation in titanium nickelide, Physics of Metals and Metallography. 49 (1980) 119-122.

Google Scholar

[32] K. Otsuka, T. Sawamura, K. Shimizu et al., Characteristics of the martensitic transformation in TiNi and the memory effect, Metallurgical Transactions. 2 (1971) 2583-2588.

DOI: 10.1007/bf02814898

Google Scholar

[33] S. D. Prokoshkin, V. Brailovski, S. Turenne et al., Concentration, temperature and deformation dependences of martensite lattice parameters in binary Ti-Ni shape memory alloys. Journal de Physique IV. 112 (2003) 651-654.

DOI: 10.1051/jp4:2003967

Google Scholar

[34] S. D. Prokoshkin, A. V. Korotitskiy, A. V. Tamonov et al., Comparative X-ray and time-of-flight neutron diffraction studies of martensite crystal lattice in stressed and unstressed binary Ti-Ni alloys, Materials Science and Engineering A. 438-440 (2006).

DOI: 10.1016/j.msea.2006.02.135

Google Scholar

[35] T. Tadaki, and C. M. Wayman, Crystal structure and microstructure of a cold worked tini alloy with unusual elastic behavior, Scripta metallurgica. 14 (1980) 911-914.

DOI: 10.1016/0036-9748(80)90319-1

Google Scholar

[36] S. D. Prokoshkin, V. Brailovskii, I. Y. Khmelevskaya et al., Creation of substructure and nanostructure in thermomechanical treatment and control of functional properties of Ti - Ni alloys with shape memory effect, Metal Science and Heat Treatment. 47(2005).

DOI: 10.1007/s11041-005-0049-8

Google Scholar

[37] K. Tsuchiya, M. Inuzuka, D. Tomus et al., Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation, Materials Science and Engineering A. 438-440 (2006) 643-648.

DOI: 10.1016/j.msea.2006.01.110

Google Scholar

[38] H. Sitepu, W. W. Schmahl, and R. B. Von Dreele, Use of the generalized spherical harmonic model for describing crystallographic texture in polycrystalline NiTi shape-memory alloy with time-of-flight neutron powder diffraction data, Applied Physics A: Materials Science and Processing. 74 (2002).

DOI: 10.1007/s003390201934

Google Scholar

[39] S. N. Kulkov, and Y. P. Mironov, Martensitic transformation in NiTi investigated by synchrotron X-ray diffraction, Nuclear Inst. and Methods in Physics Research, A. 359 (1995)165-169.

DOI: 10.1016/0168-9002(94)01644-5

Google Scholar

[40] I. Y. Khmelevskaya, I. B. Trubitsyna, S. D. Prokoshkin et al., Thermomechanical treatment of Ti-Ni-based shape memory alloys using severe plastic deformation, Materials Science Forum. 426-432 (2003) 2765-2770.

DOI: 10.4028/www.scientific.net/msf.426-432.2765

Google Scholar

[41] A. V. Sergueeva, C. Song, R. Z. Valiev et al., Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing, Materials Science and Engineering A. 339 (2003) 159-165.

DOI: 10.1016/s0921-5093(02)00122-3

Google Scholar

[42] K. S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Materialia. 51 (2003) 5743-5774.

DOI: 10.1016/j.actamat.2003.08.032

Google Scholar

[43] R. Z. Valiev, and I. V. Alexandrov, Nanostructured materials from severe plastic deformation, Nanostructured Material. 12 (1999) 35-40.

DOI: 10.1016/s0965-9773(99)00061-6

Google Scholar

[44] R. Z. Valiev, Y. Estrin, Z. Horita et al., Producing bulk ultrafine-grained materials by severe plastic deformation, JOM. 58 (2006)33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[45] B. Strnadel, S. Ohashi, H. Ohtsuka et al., Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys, Materials Science and Engineering A. 203 (1995) 187-196.

DOI: 10.1016/0921-5093(95)09881-x

Google Scholar

[46] V. Demers, V. Brailovski, S. D. Prokoshkin et al., Optimization of the cold rolling processing for continuous manufacturing of nanostructured Ti-Ni shape memory alloys, Journal of Materials Processing Technology. 209 (2009) 3096-3105.

DOI: 10.1016/j.jmatprotec.2008.07.016

Google Scholar

[47] V. Demers, V. Brailovski, S. D. Prokoshkin et al., Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys, Materials Science and Engineering A. 513-514 (2009)185-196.

DOI: 10.1016/j.msea.2009.01.055

Google Scholar

[48] Y. Facchinello, V. Brailovski, S. D. Prokoshkin et al., Manufacturing of nanostructured Ti-Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment, Journal of Materials Processing Technology. 212 (2012) 2294-2304.

DOI: 10.1016/j.jmatprotec.2012.07.001

Google Scholar

[49] S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski et al., Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape- Memory alloys, Physics of Metals and Metallography. 112 (2011).

DOI: 10.1134/s0031918x11020244

Google Scholar

[50] A. Kreitberg, S. Prokoshkin, V. Brailovski, and A. Korotitskiy, Role of structure in the realization of the recovery strain resource of the nanostructured 50. 26at. %Ni alloy, Physics of Metals and Metallography. 115 (2014) 926-947.

DOI: 10.1134/s0031918x14090087

Google Scholar

[51] H. J. Bunge, Texture analysis in materials science mathemetical methods, Butterworths, London, (1982).

Google Scholar

[52] E. P. Ryklina, S. D. Prokoshkin, and A. Y. Kreytsberg, Abnormally high recovery strain in Ti-Ni-based shape memory alloys, Journal of Alloys and Compounds. 577 (2013) S255-S258.

DOI: 10.1016/j.jallcom.2012.02.138

Google Scholar

[53] V. Brailovski, S. Prokoshkin, K. Inaekyan et al., Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti-Ni alloys processed by cold rolling and post-deformation annealing, Journal of Alloys and Compounds. 509 (2011).

DOI: 10.1016/j.jallcom.2010.10.142

Google Scholar

[54] A. Kreitcberg, V. Brailovski, S. Prokoshkin et al., Microstructure and functional fatigue of nanostructured Ti-50. 26at%Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing, Materials Science and Engineering A. 562 (2013).

DOI: 10.1016/j.msea.2012.11.013

Google Scholar

[55] B. Y. Erofeev, L. A. Monasevich, V. A. Pavskaya et al., Phase hardening during martensitic transformation of titanium nickelide, Physics of metals and Metallography. 53 (1982) 963-5.

Google Scholar

[56] S. D. Prokoshkin, I. Y. Khmelevskaya, V. Brailovski et al., Comparative study of structure and strain diagram changes in Ti-Ni alloys thermomechanically treated in martensitic or austenitic states, Journal De Physique. IV : JP. 112 (2003).

DOI: 10.1051/jp4:20031000

Google Scholar

[57] M.L. Bernshtein, S.V. Dobatkin, L. M. Kaputkina et al., Hot strain diagrams, structure and properties of steels, Moscow: Metallurgiya, 1989[inRussian].

Google Scholar

[58] S. D. Prokoshkin, I. Y. Khmelevskaya, S. V. Dobatkin et al., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys, Acta Materialia. 53 (2005) 2703-2714.

DOI: 10.1016/j.actamat.2005.02.032

Google Scholar

[59] V. I. Zel'dovich, Y. N. Frolova, V. P. Pilyugin et al., Formation of amorphous structure in titanium nickelide under plastic deformation, Physics of Metals and Metallography. 99 (2005) 425-34.

Google Scholar

[60] J. C. Ewert, I. Bohm, R. Peter et al., The role of the martensite transformation for the mechanical amorphisation of NiTi, Acta Materialia. 45 (1997) 2197-206.

DOI: 10.1016/s1359-6454(96)00322-9

Google Scholar

[61] J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia. 50 (2002)4 255-4274.

DOI: 10.1016/s1359-6454(02)00257-4

Google Scholar

[62] K. Otsuka, and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science. 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[63] H. C. Lin, S. K. Wu, T. S. Chou et al., The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy, Acta Metallurgica Et Materialia, 39 (1991) 2069-(2080).

DOI: 10.1016/0956-7151(91)90177-3

Google Scholar

[64] S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski et al., Effect of dislocation substructure and grain structure of B2-austenite on martensite lattice parameters and transformation lattice strain in binary Ti-Ni alloys, Proc. Int. Conf. SMST 2007. (2008).

DOI: 10.4028/www.scientific.net/msf.584-586.475

Google Scholar

[65] M. Piao, K. Otsuka, S. Miyazaki et al., Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys, Materials Transactions. 34 (1993) 919-929.

DOI: 10.2320/matertrans1989.34.919

Google Scholar

[66] S. D. Prokoshkin, S. Turenne, I. Y. Khmelevskaya et al., Structural mechanisms of high-temperature shape changes in titanium-nickel alloys after Low-Temperature Thermomechanical Treatment, Canadian Metallurgical Quarterly. 39 (2000) 225-234.

DOI: 10.1179/cmq.2000.39.2.225

Google Scholar

[67] K. Inaekyan, V. Brailovski, S. Prokoshkin et al., Characterization of amorphous and nanocrystalline Ti-Ni-based shape memory alloys, Journal of Alloys and Compounds. 473 (2009) 71-78.

DOI: 10.1016/j.jallcom.2008.05.023

Google Scholar

[68] K. H. J. Buschow, Stability and electrical transport properties of amorphous Ti 1-xNix alloys, Journal of Physics F: Metal Physics. 13 (1983) 563-571.

DOI: 10.1088/0305-4608/13/3/006

Google Scholar

[69] S. D. Prokoshkin, I. Y. Khmelevskaya, S. V. Dobatkin et al., Structure evolution upon severe plastic deformation of TiNi-based shape-memory alloys, Physics of Metals and Metallography, 97 (2004) 619-625.

DOI: 10.1002/3527602461.ch3j

Google Scholar

[70] A. Kreitcberg, V. Brailovski, S. D. Prokoshin et al., Influence of thermomechanical treatment on structure and crack propagation in nanostructured Ti-50. 26 at. %Ni alloy, Metallography, Microstructure, and Analysis. 3 (2014) 46-57.

DOI: 10.1007/s13632-013-0114-4

Google Scholar

[71] D. L. Holt, Dislocation cell formation in metals, Journal of Applied Physics. 41 (1970) 3197-3201.

DOI: 10.1063/1.1659399

Google Scholar

[72] Grishkov V.N., and Lotkov A.I., Martensitic transformation in the homogeneity range of the TiNi intermetallic compound, Physics of Metals and Metallography. 60 (1985).

Google Scholar

[73] K. N. Melton, Ni-Ti based shape memory alloys, Engineering aspects of shape memory alloys, T. W. Duerig(Ed. ), London(1990) 21-36.

DOI: 10.1016/b978-0-7506-1009-4.50006-8

Google Scholar

[74] T. Saburi, Ti-Ni shape memory alloys, Shape memory materials, Cambridge (1999) 49-96.

Google Scholar

[75] L. Zhao, P. F. Willemse, J. H. Mulder et al., Texture development and transformation strain of a cold-rolled Ti50-Ni45-Cu5 alloy, Scripta Materialia. 39 (1998) 1317-1323.

DOI: 10.1016/s1359-6462(98)00291-7

Google Scholar

[76] S. Miyazaki, Thermal and stress cycling effects and fatigue properties of Ti-Ni alloys, Engineering aspects of shape memory alloys, T. W. Duerig (Ed. ), London: Butterworth-Heinemann (1990) 394-413.

DOI: 10.1016/b978-0-7506-1009-4.50037-8

Google Scholar