p.207
p.232
p.245
p.260
p.342
p.406
p.429
p.457
p.480
Thermomechanical Treatment of Ti-Nb Solid Solution Based SMA
Abstract:
This Chapter is focused on the Ti-Nb-based shape memory alloys for biomedical applications; the principal objective being to understand interrelations between structure and transformation features, static and dynamic functional properties, and conditions of their thermomechanical treatment. This Chapter includes also preliminary study of the surface characteristics of Ti-Nb-based alloys, including their elemental and phase compositions, tribological characteristics, wettability, electrochemical behaviour, and in vitro biocompatibility. The results obtained make it possible to conclude that Ti-Nb-based shape memory alloys represent one of the strongest candidates for a new generation of load-bearing orthopaedic or dental implants with improved biocompatibility, since they combine high biomechanical compatibility of Ti-Ni shape memory alloys with excellent biochemical compatibility of pure titanium.
Info:
Periodical:
Pages:
342-405
Citation:
Online since:
March 2015
Keywords:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] E.W. Collings, The Physical Metallurgy of Titanium Alloys, Metals Park, OH, (1984).
[2] M. Long, H.J. Rack, Titanium Alloys in Total Joint Replacement - A Materials Science Perspective, Biomaterials 19 (1998) 1621-1639.
[3] M.I. Petrzhik, S.G. Fedotov, Yu.K. Kovneristyi, N.F. Zhebyneva, Effect of thermal cycling on structure of quenched alloys of Ti-Nb-Ta system, Met. Sci. Heat Treat. 34 (1992), 190-193.
DOI: 10.1007/bf00703635
[4] D.L. Moffat, D.C. Larbalestier, The competition between martensite and omega in quenched Ti-Nb alloys, Metall. Trans. A 19 (1988) 1677-1686.
DOI: 10.1007/bf02645135
[5] Yu.A. Bagaryatskii, G.I. Nosova, T.V. Tagunova, Metastable α' Phase in Titanium Alloys with Transition Elements, Transactions of TsNIIChM 4 (1960) 61-63.
[6] J.P. Morniroli, M. Gantois, Etude des conditions de formation de la phase omega dans les alliages titane-niobium et titane-molybdène, Mem. Sci. Rev. Metall. 70 (1973) 831-842.
[7] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.
[8] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Phase stability change with Zr content in β-type Ti–Nb alloys, Scripta Mater. 57 (2007) 1000-1003.
[9] C.M. Zener, Elasticity and anelasticity of metals, University of Chicago Press, Chicago, (1948).
[10] N. Nakanishi A calculation of the elastic constants and the effect of its anisotropy on martensitic transformation in 3/2 electronic compounds, Trans. JIM. 6 (1965) 222-228.
[11] C.P. Clapp, A localized soft mode theory for martensitic transformations, Phys. Status Solidi B 57 (1973) 561-569.
[12] V. G Pushin, V. V Kondrat'ev, V.N. Khachin, Fore-transformation effects and martensitic transformations, Ekaterinburg, UrO RAN, 1998. [in Russian].
[13] S.G. Fedotov, O.K. Belousov, The elastic properties of alloys of titanium with Molybdenum, Vanadium, and Niobium, Sov. Phys. Dokl. 8 (1963) 496-498.
[14] S.G. Fedotov, T.V. Chelidze, Yu.K. Kovneristyj, V.V. Sanadze, Phase transformations in metastable alloys of the Ti-Ta system upon heating, Fiz. Met. Metalloved. 62 (1986) 328-332.
[15] M.I. Petrzhik, S.G. Fedotov, Thermal stability and dynamics of martensite structure in Ti-(Ta, Nb) alloys, Proc. XVI Conf on Applied Crystallography, Poland: World Sci. Publ., 1995, pp.273-276.
[16] M. Petrzhik, Dynamics of martensitic structure at TiNb-based quenched alloys under heating and loading, J. Phys.: Conf. Ser. 438 (2013) 01202.
[17] S.G. Fedotov, Peculiarities of changes in elastic Properties of titanium martensite, in R.I. Jaffe, and H.M. Burte, (Eds. ) Titanium Science and Technology, Boston, 1973, pp.871-881.
[18] C. Baker The shape-memory effect in a Titanium 35 wt. % Niobium alloy. Met. Sci. 5 (1971) 92-100.
[19] T.W. Duerig, D.F. Richter, J.A. Albrecht, Shape memory in Ti-10V-2Fe-3Al Scripta Metall. Mater., 16 (1982) 957-961.
[20] T. Hamada, T. Sodeoka, M. Miyagy, Shape memory effect in Ti-Mo-Al alloys, Proc. Sixth World Conf. on Titanium. Part II. Les Editions de Physique, 1989, pp.877-882.
[21] X. Tang, T. Ahmed, H. J. Rack, Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, J. Mat. Sci. 35 (2000) 1805-1811.
[22] S. Miyazaki, H.Y. Kim, H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Mater. Sci. Eng. A 438-440 (2006) 18-24.
[23] J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Shape Memory Characteristics of Ti-22Nb-(2-8)Zr (at. %) Biomedical Alloys, Mater. Sci. Eng. A 403 (2005) 334-339.
[24] D. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, Springer, Berlin, (2001).
[25] G.I. Nosova, Phase Transformations in Titanium Alloys, Metallurgiya, Moscow, 1968. [in Russian].
[26] A.V. Dobromyslov, N.I. Taluts, Formation and Crystallographic Features of the α"-phase in Zr–Mo Alloys, Proc. XVI Conf. on Applied Crystallography, World Sci., 1996, pp.251-256.
[27] B.A. Kolachev, V.I. Elagin, V.A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys, MISiS, Moscow, 1999. [in Russian].
[28] V.N. Gridnev, O.M. Ivasishin, S.P. Oshkaderov, Physical Foundations of Rapid Thermal Hardening of Titanium Alloys, Naukova Dumka, Kiev, 1986. [in Russian].
[29] M.I. Petrzhik, N.F. Zhebyneva, Thermally Stimulated Reversible and Irreversible Martensitic Transformations in Ti–Ta–Nb Alloys, Proc. All-Russian Conf. on Martensitic Transformations in Solids MARTENSIT'91 (Kosov, Ukraine), Kiev, 1992, pp.378-381.
[30] K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Crystal symmetry and the reversibility of martensitic transformations, Nature 428 (2004) 55-59.
DOI: 10.1038/nature02378
[31] H. Funakubo, Shape memory alloys, translated from the Japanese by J.B. Kennedy Gordon and Breach Science Publishers, New York, (1986).
[32] P. Lukas, P. Sittner, D. Neov, V. Novak, D. Ludovyy, M. Tovar, R-phase phenomena in neutron diffraction investigations of thermomechanically loaded NiTi polycrystals, Mater. Sci. Forum 404-407 (2002) 835-840.
[33] S.D. Prokoshkin, A.V. Korotitskiy, A.V. Tamonov, I.Y. Khmelevskaya, E.A. Kartseva, Studies of the martensite crystal lattice in binary Ti–Ni alloy using in situ time-of-flight neutronography under temperature and stress changes, Phys. Met. Metallogr. 98 (2004).
[34] P. Sittner, P. Lukas, V. Novak, R. Daymond, G.M. Swallowe, In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Mater. Sci. Eng. A 378 (2004) 97-104.
[35] S. Prokoshkin, A. Korotitskiy, A. Tamonov, I. Khmelevskaya, V. Brailovski, S. Turenne, A comparative X-ray and time-of-flight neutron diffraction studies of martensite crystal lattice in stressed and unstressed binary Ti–Ni alloys, Mater. Sci. Eng. A 438-440 (2006).
[36] P. Sittner, P. Sedlak, M. Landa, V. Novak, P. Lukas, In situ experimental evidence on R-phase related deformation processes in activated NiTi wires, Mater. Sci. Eng. A 438-440 (2006) 579-584.
[37] P. Sittner, Revealing deformation mechanisms in SMAs by in-situ X-ray and diffraction methods, unpublished work. (2012).
[38] L.P. Khromova, N.B. Dyakonova, Yu.L. Rodionov, G.V. Yudin, I. Korms, Martensitic transformation, thermal expansion and mechanical properties of titanium–niobium alloys, J. Phys. IV 112 (2003) 1051-1054.
DOI: 10.1051/jp4:20031062
[39] N.B. D'yakonova, I.V. Lyasotskii, Yu.L. Rodionov, Orthorhombic martensite and the ω phase in quenched and deformed titanium alloys with 20–24 at % Nb. Russ. Metall. 1 (2007) 51-58.
[40] M. Tahara, H.Y. Kim, H. Hosoda, S. Miyazaki, Cyclic deformation behavior of a Ti–26 at. % Nb alloy, Acta Mater. 57 (2009) 2461-2469.
[41] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram, Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys, Mater. Charact. 6 (2011) 673-680.
[42] S.D. Prokoshkin, A.V. Korotitskiy, V.M. Gundyrev, V.I. Zeldovich, Low-temperature X-ray diffraction study of martensite lattice parameters in binary Ti–Ni alloys, Mater. Sci. Eng. A 481-482 (2008) 489-493.
[43] V. Brailovski, S. Prokoshkin, K. Inaekyan, S. Dubinskiy, M. Gauthie, Mechanical Properties of Thermomechanically-Processed Metastable Beta Ti-Nb-Zr Alloys for Biomedical Applications, Mater. Sci. Forum 706-709 (2012) 455-460.
[44] S. Dubinskiy, V. Brailovski, S. Prokoshkin, V. Pushin, K. Inaekyan, V. Sheremetyev, M. Petrzhik, M. Filonov, Structure and properties of Ti–19. 7Nb–5. 8Ta shape memory alloy subjected to thermomechanical processing including aging, J. Mater. Eng. Perform. 22 (2013).
[45] S. Dubinskiy, S. Prokoshkin, V. Brailovski, K. Inaekyan, A. Korotitskiy, In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features, Mater. Charact. 88 (2014).
[46] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation Pseudoelasticity and Deformation Behavior in Ti–50. 6 at% Ni, Scripta Metall. Mater. 15 (1981) 287-292.
[47] S.D. Prokoshkin, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu, S. Turenne, and V. Yu. Turilina, Thermomechanical Treatments and Their Influence on the Microstructure and Stress/Strain Diagrams of NiTi Shape Memory Alloys, Can. Metall. Quart. 13 (2004).
[48] V. Brailovski, I. Yu. Khmelevskaya, S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina, and R.Z. Valiev, Foundations of Heat and Thermomechanical Treatments and Their Effect on the Structure and Properties of Titanium Nickelide Based Alloys, Phys. Met. Metalogr. 97, Suppl. 1 (2004).
[49] S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Demers, E. Bastarache, E.V. Tatianin, Formation of nanocrystalline structure upon severe rolling plastic deformation and annealing and improvement of set of functional properties of Ti-Ni alloys, Bulletin of the Russian Academy of Sciences: Physics, 70 (2006).
[50] V. Brailovski, S.D. Prokoshkin, I. Yu. Khmelevskaya, K.E. Inaekyan, V. Demers, S.V. Dobatkin, E.V. Tatyanin, Structure and Properties of the Ti–50. 0 At% Ni Alloy after Strain Hardening and Nanocrystallizing Thermomechanical Processing, Mater. Trans. JIM 47 (2006).
[51] S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, V. Demers, I. Yu. Khmelevskaya, S.V. Dobatkin, E.V. Tatyanin, Structure and Properties of Severely Cold-Rolled and Annealed Ti–Ni Shape Memory Alloys, Mater. Sci. Eng. A 481-482 (2008) 114-118.
[52] K.E. Inaekyan, S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, V. Demers, S.V. Dobatkin, E.V. Tatyanin, E. Bastarache, Substructure and Nanocrystalline Structure Effects in Thermomechanically Treated Ti–Ni Alloys, Mater. Sci. Forum 503-504 (2006).
[53] V. Brailovski, S.D. Prokoshkin, I. Yu. Khmelevskaya, K.E. Inaekyan, V. Demers, E. Bastarache, S.V. Dobatkin, E.V. Tatyanin, Interrelations between the Properties and Structure of Thermomechanically Treated Equiatomic Ti–Ni Alloy, Mater. Sci. Eng. A 438-440 (2006).
[54] S.D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Yu. Turilina, V. Demers, E.V. Tat'yanin, Creation of Substructure and Nanostructure in Thermomechanical Treatment and Control of Functional Properties of Ti - Ni Alloys with Shape Memory Effect, Met. Sci. Heat Treat. 47 (2005).
[55] M.F. Lopez, A. Gutierrez, J.A. Jimenez, Surface characterization of new non-toxic titanium alloys for use as biomaterials, Surf. Sci. 482-485 (2001) 300-305.
[56] M.F. Lopez, J.A. Jimenez, A. Gutierrez, Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta 48 (2003) 1395-1401.
[57] A. Gutierrez, M.F. Lopez, J.A. Jimenez, C. Morant, F. Paszti and A. Climent, Surface characterization of the oxide layer grown on Ti–Nb–Zr and Ti–Nb–Al alloys, Surf. Interface Anal. 36 (2004) 977-980.
DOI: 10.1002/sia.1816
[58] F.H. Jones, Teeth and bones: applications of surface science to dental materials and related biomaterials, Surf. Sci. Rep. 42 (2001) 75-205.
[59] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R. 47 (2004) 49-121.
[60] M.C.G. Passeggi Jr., L.I. Vergara, S.M. Mendoza, J. Ferron, Passivation and temperature effects on the oxidation process of titanium thin films, Surf. Sci. 507-510 (2002) 825-831.
[61] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications, Wear 257 (2004) 869-876.
[62] D.A. Khoviv, S.V. Zaytsev, V.M. Ievlev, Electronic structure and formation mechanism of complex Ti–Nb oxide, Thin Solid Films 520 (2012) 4797-4799.
[63] J. Black, Biological Performance of Materials-Fundamentals of Biocompatibility, second ed., Marcel Dekker Inc., New York, (1992).
[64] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, High surface energy enhances cell response to titanium substrate microstructure, J. Biomed. Mater. Res. A 74 (2005) 49-58.
DOI: 10.1002/jbm.a.30320
[65] V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu (Eds. ), Shape memory alloys: fundamentals, modeling and applications, ETS Publ., Montreal, (2003).
[66] C. Leyens, M. Peters (Eds. ), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, Weinheim, (2003).
[67] S.G. Steinemann, Corrosion of surgical implants-in vivo and in vitro tests, in: G.D. Winter, J.L. Leray, K. de Groot (Eds. ), Evaluation of Biomaterials, Wiley, New York, 1980, pp.1-34.
[68] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
[69] K.C. Dee, D.A. Puleo, R. Bizios, An Introduction To Tissue-Biomaterial Interactions, John Wiley and Sons, Hoboken, NJ, (2002).
DOI: 10.1002/0471270598
[70] Y. Oshida, Bioscience and Bioengineering of Titanium Materials, Elsevier, UK, (2006).
[71] C. Fleck, D. Eifler, Corrosion, fatigue and corrosion fatigue behavior of metal implant materials, especially titanium alloys, Int. J. Fatigue, 32, 6 (2010) 929-935.
[72] A. Zielinski, S. Sobieszczyk, Corrosion of Titanium Biomaterials, Mechanisms, Effects and Modelisation, Corros. Rev. 26 (2008) 1-22.
[73] S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, Y.T. Konttinen, Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomater. 4 (2008) 468-476.
[74] T.M. Sridhar, S. Rajeswari, Biomaterials Corrosion, Corros. Rev. 27 (2009) 287-332.
[75] R.A. Antunes, M.C.L. de Oliveira, Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation, Acta Biomater. 8 (2012) 937-962.
[76] A. Biesiekierski, D.H. Ping, Y. Yamabe-Mitarai, C. Wen, Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications, Mater. Design 59 (2014) 303-309.
[77] D.Q. Martins, W.R. Osório, M.E.P. Souza, R. Caram, A. Garcia, Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications, Electrochim. Acta 53 (2008) 2809-2817.
[78] Y.J. Bai, Y.B. Wang, Y. Cheng, F. Deng, Y.F. Zheng, S.C. Wei, Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions, Mat. Sci. Eng. C 31 (2011) 702-711.
[79] A.M.G. Tavares, B.S. Fernandes, S.A. Souza, W.W. Batista, F.G.C. Cunha, R. Landers, M.C.S.S. Macedo, The addition of Si to the Ti–35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials, J. Alloy. Compd. 591 (2014).
[80] A. Hynowska, E. Pellicer, J. Fornell, S. González, N. van Steenberge, S. Suriñach, A. Gebert, M. Calin, J. Eckert, M. Dolors Baró, J. Sort, Nanostructured β-phase Ti–31. 0Fe–9. 0Sn and sub-μm structured Ti–39. 3Nb–13. 3Zr–10. 7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances, Mat. Sci. Eng. C 32 (2012).
[81] J. Li, S.J. Li, Y.L. Hao, H.H. Huang, Y. Bai, Y.Q. Hao, Z. Guo, J.Q. Xue, R. Yang, Electrochemical and surface analyses of nanostructured Ti–24Nb–4Zr–8Sn alloys in simulated body solution, Acta Biomater. 10 (2014) 2866-2875.
[82] A. Cremasco, W.R. Osório, C.M.A. Freire, A. Garcia, R. Caram, Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses, Electrochim. Acta 53 (2008) 4867-4874.
[83] J. Fojt, L. Joska, J. Málek, Corrosion behavior of porous Ti–39Nb alloy for biomedical applications, Corros. Sci. 71 (2013) 78-83.
[84] A. Cremasco, E.S.N. Lopes, F.F. Cardoso, R.J. Contieri, I. Ferreira, R. Caram, Effects of the microstructural characteristics of a metastable β Ti alloy on its corrosion fatigue properties, Int. J. Fatigue 54 (2013) 32-37.
[85] Y. Bai, Y.L. Hao, S.J. Li, Y.Q. Hao, R. Yang, F. Prima, Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions, Mat. Sci. Eng. C 33 (2013) 2159-2167.
[86] S. Guo, A. Chu, H. Wu, C. Cai, X. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7. 9Sn alloy for biomedical applications, J. Alloy. Compd. 597 (2014) 211-216.
[87] Y. Bai, S.J. Li, F. Prima, Y.L. Hao, R. Yang, Electrochemical corrosion behavior of Ti–24Nb–4Zr–8Sn alloy in a simulated physiological environment, Appl. Surf. Sci. 258 (2012) 4035-4040.
[88] R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, M.S. Hahn, A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys, Acta Biomater. 8 (2012).
[89] E. Bertrand, T. Gloriant, D.M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy, J. Mech. Behav. Biomed. 3 (2010) 559-564.
[90] I. Milošev, G. Žerjav, J.M. Calderon Moreno, M. Popa, Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti–20Nb–10Zr–5Ta alloy, Electrochim. Acta 99 (2013) 176-189.
[91] M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Corrosion behavior of β titanium alloys for biomedical applications, Mat. Sci. Eng. C 31 (2011) 885-891.
[92] C. Vasilescu, S.I. Drob, E.I. Neacsu, J.C. Mirza Rosca, Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids, Corros. Sci. 65 (2012) 431-440.
[93] R. Godley, D. Starosvetsky, I. Gotman, Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants, J. Mater. Sci - Mater. M 17 (2006) 63-67.
[94] Y.F. Zheng, B.L. Wang, J.G. Wang, C. Li, L.C. Zhao, Corrosion behavior of Ti–Nb–Sn shape memory alloys in different simulated body solutions, Mat. Sci. Eng. A 438-440 (2006) 891-895.
[95] V.A. Sheremet'ev, S.M. Dubinskii, Yu.S. Zhukova, V. Brailovski, M.I. Petrzhik, S.D. Prokoshkin, Yu.A. Pustov, M.R. Filonov, Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti-Nb-(Ta, Zr) alloys, Met. Sci. Heat Treat. 55 (2013).
[96] Yu. Zhukova, A. Konopatsky, Yu. Pustov, Investigation of electrochemical behavior of novel superelastic biomedical alloys in simulated physiological media, Mater. Sci. Forum 738-739 (2013) 566-570.
[97] Yu.S. Zhukova, Yu.A. Pustov, M.R. Filonov, Kinetic Regularities and Mechanism of Formation of Nanosize Passive Films on Titanium Alloys for Medical Application and Their Electrochemical Behavior in Simulated Physiological Media, Protection of Metals and Physical Chemistry of Surfaces 48 (2012).
[98] Y.S. Zhukova, Y.A. Pustov, A.S. Konopatsky, M.R. Filonov, Characterization of electrochemical behavior and surface oxide films on superelastic biomedical Ti–Nb–Ta alloy in simulated physiological solutions, J. Alloy. Compd. 586S (2014) S535-S538.
[99] Yu.S. Zhukova, Yu.A. Pustov, A.S. Konopatsky, M.R. Filonov, S.D. Prokoshkin, Electrochemical behavior of novel superelastic biomedical alloys in simulated physiological media under cyclic load, J. Mater. Eng. Perform. (2014).
[100] Yu.A. Pustov, Yu.S. Zhukova, M.R. Filonov, The Role of Martensitic Transformation in Corrosion Fatigue Failure of Ti–22 Nb–6 Ta and Ti–22 Nb–6 Zr (at %) Medical Alloys, Protection of Metals and Physical Chemistry of Surfaces 50 (2014) 524-529.
[101] S. Dubinskiy, V. Brailovski, S. Prokoshkin, K. Inaekyan, In-situ X-ray study of phase transformations in Ti–Nb-based SMA under variable stress–temperature conditions: preliminary results, Mater. Sci. Forum 738-739 (2013) 87-91.
[102] J.B. Nelson, D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals, Proc. Phys. Soc. 57 (1945) 160-177.
[103] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, I.B. Trubitsyna, On the lattice parameters of phases in binary Ti–Ni shape memory alloys, Acta Mater. 52 (2004) 4479-4492.
[104] F. Sun, Y.L. Hao, S. Novak, T. Gloriant, P. Laheurte, F. Prima, A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at. %) alloys, J. Mech. Behav. Biomed. Mater. 4 (2011) 1864-1872.
[105] S.D. Prokoshkin, V. Brailovskii, S. Tyurenn, I. Yu. Khmelevskaya, A.V. Korotitskii, I.B. Trubitsyna, On the Lattice Parameters of the B19' Martensite in Binary Ti–Ni Shape-Memory Alloys, Phys. Met. Metallogr. 96 (2003) 55-64.
DOI: 10.1051/jp4:2003967
[106] Yu.S. Zhukova, M.I. Petrzhik, S.D. Prokoshkin, Estimation of the Crystallographic Strain Limit during the Reversible β↔α' Martensitic Transformation in Titanium Shape Memory Alloys, Russ. Metall. 11 (2010) 1056-1062.
[107] H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Texture and Shape Memory Behavior of Ti–22Nb–6Ta Alloy, Acta Mater. 54 (2006) 423-433.
[108] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys, Phys. Met. Metallogr. 112 (2011).
[109] T. Inamura, H. Hosoda, H.Y. Kim, S. Miyazaki, Antiphase boundary-like stacking fault in α"-martensite of disordered crystal structure in β-titanium shape memory alloy. Philos. Mag. 90 (2010) 3475-3498.
[110] K. Otsuka, C.M. Wayman (Eds. ) Shape Memory Materials, Cambridge University Press, (1999).
[111] S.D. Prokoshkin, L.V. Karabasova, D.E. Kaputkin, Dilatometric effects at martensitic transformations in high-carbon steels. Fiz. Met. Metalloved. 67 (1989) 622-624. [in Russian].
[112] S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev, Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys, Acta Mater. 53 (2005).
[113] V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, M. Filonov, Bulk and porous metastable beta Ti-Nb-Zr(Ta) alloys for biomedical applications, Mater. Sci. Eng. C 31 (2011) 643-657.
[114] Y. Al-Zain, H.Y. Kim, T. Koyano, H. Hosoda, T.H. Nam, S. Miyazaki, Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys, Acta Mater. 59 (2011) 1464-1473.
[115] S. Prokoshkin, A. Korotitskiy, V. Brailovski, K. Inaekyan, Effect of Dislocation Substructure and Grain Structure of B2-Austenite on Martensite Lattice Parameters and Transformation Lattice Strain in Binary Ti–Ni Alloys, Proc. Int. Conf. SMST, Tsukuba, 2007 (ASM Int., Materils Park, Ohio, 2008), pp.63-70.
[116] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, A Comparative Study of Martensite Crystal Lattice in Nanostructured, Quenched and Deformed Ti–Ni Shape Memory Alloys, Proc. 8th Europ. Symp. on Martensitic Transformations, ESOMAT 2009 (EDP Science, Prague, 2009), pp.1-7.
[117] S.M. Dubinskiy, S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, A.V. Korotitskiy, M.R. Filonov, M.I. Petrzhik, Structure Formation during Thermomechanical Processing of Ti-Nb-(Zr, Ta) Alloys and the Manifestation of the Shape-Memory Effect, Phys. Met. Metallogr. 112 (2011).
[118] M.L. Bernshtein, L.M. Kaputkina, S.D. Prokoshkin, N.A. Nikishov, A.V. Lyutsau, Structure of Hot-Deformed Austenite and Its Change upon Storage after Deformation, Fiz. Met. Metalloved. 42 (1976) 804-813.
[119] S.D. Prokoshkin, V. Brailovskii, A.V. Korotitskii, K.E. Inaekyan, and A.M. Glezer, Specific Features of the Formation of the Microstructure of Titanium Nickelide upon Thermomechanical Treatment Including Cold Plastic Deformation to Degrees from Moderate to Severe, Phys. Met. Metallogr. 110 (2010).
[120] V. Brailovski, S. Prokoshkin, K. Inaekyan, S. Dubinskiy, Influence of Omega-Phase Precipitation Hardening on the Static and Dynamic Properties of Metastable Beta Ti-Nb-Zr and Ti-Nb-Ta Alloys, Mater. Sci. Forum. 738-739 (2013) 189-194.
[121] B.S. Hickman, The formation of omega phase in titanium and zirconium alloys: a review. J. Mater. Sci. 4 (1969) 554-563.
DOI: 10.1007/bf00550217
[122] M. Geetha, A.K. Singh, A.K. Gogia, R. Asokamani, Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys, J. Alloy. Compd. 384 (2004) 131-144.
[123] M.I. Petrzhik, E.A. Levashov, Modern Methods for Investigation Functional Surfaces of Advanced Materials by Mechanical Contact Testing, Crystallography Reports 52 (2007) 966-974.
[124] Yu.S. Zhukova. Production and characterization of superelastic Ti-Nb-Ta, Ti-Nb-Zr alloys for medical application, unpublished work, (2013).
[125] N. Cabrera, N.F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12 (1949) 163-184.
[126] K. Hauffe, B. Ilschner, Uber den mechanismus der oxydation von nickel bei niedrigen temperature, Z. Elekrtochem. 58 (1954) 382-387. [in German].
[127] E.M. Gutman, Mechanochemistry of materials, Cambridge International Science Publishing, (1998).
[128] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Mater. 51 (2004) 225-229.
[129] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti–Nb Binary Alloys, Acta Mater. 54 (2006) 2419-2429.
[130] Yu.A. Pustov, A.V. Kutuzov, M.R. Filonov, M.I. Belov, Study of failure causes of dental Ti-, Co- and Au-based alloys in simulated performance conditions. Part 2. Influence of cyclic dynamic load on corrosion and electrochemical behavior of orthopedic dental VT1-0 alloy in biological fluids, Corrosion: materials and protection 10 (2011).
[131] M. Kh. Shorshorov, I.A. Stepanov, Yu.M. Flomenblit, V.V. Travkin, Phase and structure transformations induced by hydrogen in alloys on a titanium nickelide base, Phys. Met. Metallogr., 60 (1985) 109-115.
[132] S. Yi, S. Gao, Fracture toughening mechanism of shape memory alloys due to martensite transformation, Int. J. Solids Struct., 37 (2000) 5315-5327.
[133] S.W. Robertson, A. Mehta, A.R. Pelton, R.O. Ritchie, Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis, Acta Mater., 55 (2007).
[134] R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater. 57 (2009) 1188-1198.