Thermomechanical Treatment of Ti-Nb Solid Solution Based SMA

Article Preview

Abstract:

This Chapter is focused on the Ti-Nb-based shape memory alloys for biomedical applications; the principal objective being to understand interrelations between structure and transformation features, static and dynamic functional properties, and conditions of their thermomechanical treatment. This Chapter includes also preliminary study of the surface characteristics of Ti-Nb-based alloys, including their elemental and phase compositions, tribological characteristics, wettability, electrochemical behaviour, and in vitro biocompatibility. The results obtained make it possible to conclude that Ti-Nb-based shape memory alloys represent one of the strongest candidates for a new generation of load-bearing orthopaedic or dental implants with improved biocompatibility, since they combine high biomechanical compatibility of Ti-Ni shape memory alloys with excellent biochemical compatibility of pure titanium.

You might also be interested in these eBooks

Info:

[1] E.W. Collings, The Physical Metallurgy of Titanium Alloys, Metals Park, OH, (1984).

Google Scholar

[2] M. Long, H.J. Rack, Titanium Alloys in Total Joint Replacement - A Materials Science Perspective, Biomaterials 19 (1998) 1621-1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[3] M.I. Petrzhik, S.G. Fedotov, Yu.K. Kovneristyi, N.F. Zhebyneva, Effect of thermal cycling on structure of quenched alloys of Ti-Nb-Ta system, Met. Sci. Heat Treat. 34 (1992), 190-193.

DOI: 10.1007/bf00703635

Google Scholar

[4] D.L. Moffat, D.C. Larbalestier, The competition between martensite and omega in quenched Ti-Nb alloys, Metall. Trans. A 19 (1988) 1677-1686.

DOI: 10.1007/bf02645135

Google Scholar

[5] Yu.A. Bagaryatskii, G.I. Nosova, T.V. Tagunova, Metastable α' Phase in Titanium Alloys with Transition Elements, Transactions of TsNIIChM 4 (1960) 61-63.

Google Scholar

[6] J.P. Morniroli, M. Gantois, Etude des conditions de formation de la phase omega dans les alliages titane-niobium et titane-molybdène, Mem. Sci. Rev. Metall. 70 (1973) 831-842.

Google Scholar

[7] M. Abdel-Hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters, Scripta Mater. 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[8] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Phase stability change with Zr content in β-type Ti–Nb alloys, Scripta Mater. 57 (2007) 1000-1003.

DOI: 10.1016/j.scriptamat.2007.08.003

Google Scholar

[9] C.M. Zener, Elasticity and anelasticity of metals, University of Chicago Press, Chicago, (1948).

Google Scholar

[10] N. Nakanishi A calculation of the elastic constants and the effect of its anisotropy on martensitic transformation in 3/2 electronic compounds, Trans. JIM. 6 (1965) 222-228.

DOI: 10.2320/matertrans1960.6.222

Google Scholar

[11] C.P. Clapp, A localized soft mode theory for martensitic transformations, Phys. Status Solidi B 57 (1973) 561-569.

DOI: 10.1002/pssb.2220570213

Google Scholar

[12] V. G Pushin, V. V Kondrat'ev, V.N. Khachin, Fore-transformation effects and martensitic transformations, Ekaterinburg, UrO RAN, 1998. [in Russian].

Google Scholar

[13] S.G. Fedotov, O.K. Belousov, The elastic properties of alloys of titanium with Molybdenum, Vanadium, and Niobium, Sov. Phys. Dokl. 8 (1963) 496-498.

Google Scholar

[14] S.G. Fedotov, T.V. Chelidze, Yu.K. Kovneristyj, V.V. Sanadze, Phase transformations in metastable alloys of the Ti-Ta system upon heating, Fiz. Met. Metalloved. 62 (1986) 328-332.

Google Scholar

[15] M.I. Petrzhik, S.G. Fedotov, Thermal stability and dynamics of martensite structure in Ti-(Ta, Nb) alloys, Proc. XVI Conf on Applied Crystallography, Poland: World Sci. Publ., 1995, pp.273-276.

Google Scholar

[16] M. Petrzhik, Dynamics of martensitic structure at TiNb-based quenched alloys under heating and loading, J. Phys.: Conf. Ser. 438 (2013) 01202.

DOI: 10.1088/1742-6596/438/1/012020

Google Scholar

[17] S.G. Fedotov, Peculiarities of changes in elastic Properties of titanium martensite, in R.I. Jaffe, and H.M. Burte, (Eds. ) Titanium Science and Technology, Boston, 1973, pp.871-881.

Google Scholar

[18] C. Baker The shape-memory effect in a Titanium 35 wt. % Niobium alloy. Met. Sci. 5 (1971) 92-100.

DOI: 10.1179/030634571790439658

Google Scholar

[19] T.W. Duerig, D.F. Richter, J.A. Albrecht, Shape memory in Ti-10V-2Fe-3Al Scripta Metall. Mater., 16 (1982) 957-961.

DOI: 10.1016/0036-9748(82)90133-8

Google Scholar

[20] T. Hamada, T. Sodeoka, M. Miyagy, Shape memory effect in Ti-Mo-Al alloys, Proc. Sixth World Conf. on Titanium. Part II. Les Editions de Physique, 1989, pp.877-882.

Google Scholar

[21] X. Tang, T. Ahmed, H. J. Rack, Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, J. Mat. Sci. 35 (2000) 1805-1811.

Google Scholar

[22] S. Miyazaki, H.Y. Kim, H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Mater. Sci. Eng. A 438-440 (2006) 18-24.

DOI: 10.1016/j.msea.2006.02.054

Google Scholar

[23] J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Shape Memory Characteristics of Ti-22Nb-(2-8)Zr (at. %) Biomedical Alloys, Mater. Sci. Eng. A 403 (2005) 334-339.

DOI: 10.1016/j.msea.2005.05.050

Google Scholar

[24] D. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, Springer, Berlin, (2001).

DOI: 10.1007/978-3-642-56486-4

Google Scholar

[25] G.I. Nosova, Phase Transformations in Titanium Alloys, Metallurgiya, Moscow, 1968. [in Russian].

Google Scholar

[26] A.V. Dobromyslov, N.I. Taluts, Formation and Crystallographic Features of the α"-phase in Zr–Mo Alloys, Proc. XVI Conf. on Applied Crystallography, World Sci., 1996, pp.251-256.

Google Scholar

[27] B.A. Kolachev, V.I. Elagin, V.A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys, MISiS, Moscow, 1999. [in Russian].

Google Scholar

[28] V.N. Gridnev, O.M. Ivasishin, S.P. Oshkaderov, Physical Foundations of Rapid Thermal Hardening of Titanium Alloys, Naukova Dumka, Kiev, 1986. [in Russian].

Google Scholar

[29] M.I. Petrzhik, N.F. Zhebyneva, Thermally Stimulated Reversible and Irreversible Martensitic Transformations in Ti–Ta–Nb Alloys, Proc. All-Russian Conf. on Martensitic Transformations in Solids MARTENSIT'91 (Kosov, Ukraine), Kiev, 1992, pp.378-381.

Google Scholar

[30] K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Crystal symmetry and the reversibility of martensitic transformations, Nature 428 (2004) 55-59.

DOI: 10.1038/nature02378

Google Scholar

[31] H. Funakubo, Shape memory alloys, translated from the Japanese by J.B. Kennedy Gordon and Breach Science Publishers, New York, (1986).

DOI: 10.1017/s0263574700004458

Google Scholar

[32] P. Lukas, P. Sittner, D. Neov, V. Novak, D. Ludovyy, M. Tovar, R-phase phenomena in neutron diffraction investigations of thermomechanically loaded NiTi polycrystals, Mater. Sci. Forum 404-407 (2002) 835-840.

DOI: 10.4028/www.scientific.net/msf.404-407.835

Google Scholar

[33] S.D. Prokoshkin, A.V. Korotitskiy, A.V. Tamonov, I.Y. Khmelevskaya, E.A. Kartseva, Studies of the martensite crystal lattice in binary Ti–Ni alloy using in situ time-of-flight neutronography under temperature and stress changes, Phys. Met. Metallogr. 98 (2004).

DOI: 10.1016/j.msea.2006.02.135

Google Scholar

[34] P. Sittner, P. Lukas, V. Novak, R. Daymond, G.M. Swallowe, In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Mater. Sci. Eng. A 378 (2004) 97-104.

DOI: 10.1016/j.msea.2003.09.112

Google Scholar

[35] S. Prokoshkin, A. Korotitskiy, A. Tamonov, I. Khmelevskaya, V. Brailovski, S. Turenne, A comparative X-ray and time-of-flight neutron diffraction studies of martensite crystal lattice in stressed and unstressed binary Ti–Ni alloys, Mater. Sci. Eng. A 438-440 (2006).

DOI: 10.1016/j.msea.2006.02.135

Google Scholar

[36] P. Sittner, P. Sedlak, M. Landa, V. Novak, P. Lukas, In situ experimental evidence on R-phase related deformation processes in activated NiTi wires, Mater. Sci. Eng. A 438-440 (2006) 579-584.

DOI: 10.1016/j.msea.2006.02.200

Google Scholar

[37] P. Sittner, Revealing deformation mechanisms in SMAs by in-situ X-ray and diffraction methods, unpublished work. (2012).

Google Scholar

[38] L.P. Khromova, N.B. Dyakonova, Yu.L. Rodionov, G.V. Yudin, I. Korms, Martensitic transformation, thermal expansion and mechanical properties of titanium–niobium alloys, J. Phys. IV 112 (2003) 1051-1054.

DOI: 10.1051/jp4:20031062

Google Scholar

[39] N.B. D'yakonova, I.V. Lyasotskii, Yu.L. Rodionov, Orthorhombic martensite and the ω phase in quenched and deformed titanium alloys with 20–24 at % Nb. Russ. Metall. 1 (2007) 51-58.

DOI: 10.1134/s0036029507010107

Google Scholar

[40] M. Tahara, H.Y. Kim, H. Hosoda, S. Miyazaki, Cyclic deformation behavior of a Ti–26 at. % Nb alloy, Acta Mater. 57 (2009) 2461-2469.

DOI: 10.1016/j.actamat.2009.01.037

Google Scholar

[41] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram, Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys, Mater. Charact. 6 (2011) 673-680.

DOI: 10.1016/j.matchar.2011.04.015

Google Scholar

[42] S.D. Prokoshkin, A.V. Korotitskiy, V.M. Gundyrev, V.I. Zeldovich, Low-temperature X-ray diffraction study of martensite lattice parameters in binary Ti–Ni alloys, Mater. Sci. Eng. A 481-482 (2008) 489-493.

DOI: 10.1016/j.msea.2006.12.209

Google Scholar

[43] V. Brailovski, S. Prokoshkin, K. Inaekyan, S. Dubinskiy, M. Gauthie, Mechanical Properties of Thermomechanically-Processed Metastable Beta Ti-Nb-Zr Alloys for Biomedical Applications, Mater. Sci. Forum 706-709 (2012) 455-460.

DOI: 10.4028/www.scientific.net/msf.706-709.455

Google Scholar

[44] S. Dubinskiy, V. Brailovski, S. Prokoshkin, V. Pushin, K. Inaekyan, V. Sheremetyev, M. Petrzhik, M. Filonov, Structure and properties of Ti–19. 7Nb–5. 8Ta shape memory alloy subjected to thermomechanical processing including aging, J. Mater. Eng. Perform. 22 (2013).

DOI: 10.1007/s11665-013-0555-6

Google Scholar

[45] S. Dubinskiy, S. Prokoshkin, V. Brailovski, K. Inaekyan, A. Korotitskiy, In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features, Mater. Charact. 88 (2014).

DOI: 10.1016/j.matchar.2013.12.008

Google Scholar

[46] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation Pseudoelasticity and Deformation Behavior in Ti–50. 6 at% Ni, Scripta Metall. Mater. 15 (1981) 287-292.

DOI: 10.1016/0036-9748(81)90346-x

Google Scholar

[47] S.D. Prokoshkin, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu, S. Turenne, and V. Yu. Turilina, Thermomechanical Treatments and Their Influence on the Microstructure and Stress/Strain Diagrams of NiTi Shape Memory Alloys, Can. Metall. Quart. 13 (2004).

DOI: 10.1179/cmq.2004.43.1.95

Google Scholar

[48] V. Brailovski, I. Yu. Khmelevskaya, S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina, and R.Z. Valiev, Foundations of Heat and Thermomechanical Treatments and Their Effect on the Structure and Properties of Titanium Nickelide Based Alloys, Phys. Met. Metalogr. 97, Suppl. 1 (2004).

Google Scholar

[49] S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Demers, E. Bastarache, E.V. Tatianin, Formation of nanocrystalline structure upon severe rolling plastic deformation and annealing and improvement of set of functional properties of Ti-Ni alloys, Bulletin of the Russian Academy of Sciences: Physics, 70 (2006).

Google Scholar

[50] V. Brailovski, S.D. Prokoshkin, I. Yu. Khmelevskaya, K.E. Inaekyan, V. Demers, S.V. Dobatkin, E.V. Tatyanin, Structure and Properties of the Ti–50. 0 At% Ni Alloy after Strain Hardening and Nanocrystallizing Thermomechanical Processing, Mater. Trans. JIM 47 (2006).

DOI: 10.2320/matertrans.47.795

Google Scholar

[51] S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, V. Demers, I. Yu. Khmelevskaya, S.V. Dobatkin, E.V. Tatyanin, Structure and Properties of Severely Cold-Rolled and Annealed Ti–Ni Shape Memory Alloys, Mater. Sci. Eng. A 481-482 (2008) 114-118.

DOI: 10.1016/j.msea.2007.02.150

Google Scholar

[52] K.E. Inaekyan, S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, V. Demers, S.V. Dobatkin, E.V. Tatyanin, E. Bastarache, Substructure and Nanocrystalline Structure Effects in Thermomechanically Treated Ti–Ni Alloys, Mater. Sci. Forum 503-504 (2006).

DOI: 10.4028/www.scientific.net/msf.503-504.597

Google Scholar

[53] V. Brailovski, S.D. Prokoshkin, I. Yu. Khmelevskaya, K.E. Inaekyan, V. Demers, E. Bastarache, S.V. Dobatkin, E.V. Tatyanin, Interrelations between the Properties and Structure of Thermomechanically Treated Equiatomic Ti–Ni Alloy, Mater. Sci. Eng. A 438-440 (2006).

DOI: 10.1016/j.msea.2006.02.131

Google Scholar

[54] S.D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Yu. Turilina, V. Demers, E.V. Tat'yanin, Creation of Substructure and Nanostructure in Thermomechanical Treatment and Control of Functional Properties of Ti - Ni Alloys with Shape Memory Effect, Met. Sci. Heat Treat. 47 (2005).

DOI: 10.1007/s11041-005-0049-8

Google Scholar

[55] M.F. Lopez, A. Gutierrez, J.A. Jimenez, Surface characterization of new non-toxic titanium alloys for use as biomaterials, Surf. Sci. 482-485 (2001) 300-305.

DOI: 10.1016/s0039-6028(00)01005-0

Google Scholar

[56] M.F. Lopez, J.A. Jimenez, A. Gutierrez, Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta 48 (2003) 1395-1401.

DOI: 10.1016/s0013-4686(03)00006-9

Google Scholar

[57] A. Gutierrez, M.F. Lopez, J.A. Jimenez, C. Morant, F. Paszti and A. Climent, Surface characterization of the oxide layer grown on Ti–Nb–Zr and Ti–Nb–Al alloys, Surf. Interface Anal. 36 (2004) 977-980.

DOI: 10.1002/sia.1816

Google Scholar

[58] F.H. Jones, Teeth and bones: applications of surface science to dental materials and related biomaterials, Surf. Sci. Rep. 42 (2001) 75-205.

DOI: 10.1016/s0167-5729(00)00011-x

Google Scholar

[59] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R. 47 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[60] M.C.G. Passeggi Jr., L.I. Vergara, S.M. Mendoza, J. Ferron, Passivation and temperature effects on the oxidation process of titanium thin films, Surf. Sci. 507-510 (2002) 825-831.

DOI: 10.1016/s0039-6028(02)01358-4

Google Scholar

[61] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications, Wear 257 (2004) 869-876.

DOI: 10.1016/j.wear.2004.04.001

Google Scholar

[62] D.A. Khoviv, S.V. Zaytsev, V.M. Ievlev, Electronic structure and formation mechanism of complex Ti–Nb oxide, Thin Solid Films 520 (2012) 4797-4799.

DOI: 10.1016/j.tsf.2011.10.130

Google Scholar

[63] J. Black, Biological Performance of Materials-Fundamentals of Biocompatibility, second ed., Marcel Dekker Inc., New York, (1992).

Google Scholar

[64] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan, High surface energy enhances cell response to titanium substrate microstructure, J. Biomed. Mater. Res. A 74 (2005) 49-58.

DOI: 10.1002/jbm.a.30320

Google Scholar

[65] V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu (Eds. ), Shape memory alloys: fundamentals, modeling and applications, ETS Publ., Montreal, (2003).

Google Scholar

[66] C. Leyens, M. Peters (Eds. ), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley and Sons, Weinheim, (2003).

Google Scholar

[67] S.G. Steinemann, Corrosion of surgical implants-in vivo and in vitro tests, in: G.D. Winter, J.L. Leray, K. de Groot (Eds. ), Evaluation of Biomaterials, Wiley, New York, 1980, pp.1-34.

Google Scholar

[68] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[69] K.C. Dee, D.A. Puleo, R. Bizios, An Introduction To Tissue-Biomaterial Interactions, John Wiley and Sons, Hoboken, NJ, (2002).

DOI: 10.1002/0471270598

Google Scholar

[70] Y. Oshida, Bioscience and Bioengineering of Titanium Materials, Elsevier, UK, (2006).

Google Scholar

[71] C. Fleck, D. Eifler, Corrosion, fatigue and corrosion fatigue behavior of metal implant materials, especially titanium alloys, Int. J. Fatigue, 32, 6 (2010) 929-935.

DOI: 10.1016/j.ijfatigue.2009.09.009

Google Scholar

[72] A. Zielinski, S. Sobieszczyk, Corrosion of Titanium Biomaterials, Mechanisms, Effects and Modelisation, Corros. Rev. 26 (2008) 1-22.

Google Scholar

[73] S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, Y.T. Konttinen, Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomater. 4 (2008) 468-476.

DOI: 10.1016/j.actbio.2007.12.003

Google Scholar

[74] T.M. Sridhar, S. Rajeswari, Biomaterials Corrosion, Corros. Rev. 27 (2009) 287-332.

Google Scholar

[75] R.A. Antunes, M.C.L. de Oliveira, Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation, Acta Biomater. 8 (2012) 937-962.

DOI: 10.1016/j.actbio.2011.09.012

Google Scholar

[76] A. Biesiekierski, D.H. Ping, Y. Yamabe-Mitarai, C. Wen, Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications, Mater. Design 59 (2014) 303-309.

DOI: 10.1016/j.matdes.2014.02.058

Google Scholar

[77] D.Q. Martins, W.R. Osório, M.E.P. Souza, R. Caram, A. Garcia, Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications, Electrochim. Acta 53 (2008) 2809-2817.

DOI: 10.1016/j.electacta.2007.10.060

Google Scholar

[78] Y.J. Bai, Y.B. Wang, Y. Cheng, F. Deng, Y.F. Zheng, S.C. Wei, Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions, Mat. Sci. Eng. C 31 (2011) 702-711.

DOI: 10.1016/j.msec.2010.12.010

Google Scholar

[79] A.M.G. Tavares, B.S. Fernandes, S.A. Souza, W.W. Batista, F.G.C. Cunha, R. Landers, M.C.S.S. Macedo, The addition of Si to the Ti–35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials, J. Alloy. Compd. 591 (2014).

DOI: 10.1016/j.jallcom.2013.12.183

Google Scholar

[80] A. Hynowska, E. Pellicer, J. Fornell, S. González, N. van Steenberge, S. Suriñach, A. Gebert, M. Calin, J. Eckert, M. Dolors Baró, J. Sort, Nanostructured β-phase Ti–31. 0Fe–9. 0Sn and sub-μm structured Ti–39. 3Nb–13. 3Zr–10. 7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances, Mat. Sci. Eng. C 32 (2012).

DOI: 10.1016/j.msec.2012.07.016

Google Scholar

[81] J. Li, S.J. Li, Y.L. Hao, H.H. Huang, Y. Bai, Y.Q. Hao, Z. Guo, J.Q. Xue, R. Yang, Electrochemical and surface analyses of nanostructured Ti–24Nb–4Zr–8Sn alloys in simulated body solution, Acta Biomater. 10 (2014) 2866-2875.

DOI: 10.1016/j.actbio.2014.02.032

Google Scholar

[82] A. Cremasco, W.R. Osório, C.M.A. Freire, A. Garcia, R. Caram, Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses, Electrochim. Acta 53 (2008) 4867-4874.

DOI: 10.1016/j.electacta.2008.02.011

Google Scholar

[83] J. Fojt, L. Joska, J. Málek, Corrosion behavior of porous Ti–39Nb alloy for biomedical applications, Corros. Sci. 71 (2013) 78-83.

DOI: 10.1016/j.corsci.2013.03.007

Google Scholar

[84] A. Cremasco, E.S.N. Lopes, F.F. Cardoso, R.J. Contieri, I. Ferreira, R. Caram, Effects of the microstructural characteristics of a metastable β Ti alloy on its corrosion fatigue properties, Int. J. Fatigue 54 (2013) 32-37.

DOI: 10.1016/j.ijfatigue.2013.04.010

Google Scholar

[85] Y. Bai, Y.L. Hao, S.J. Li, Y.Q. Hao, R. Yang, F. Prima, Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions, Mat. Sci. Eng. C 33 (2013) 2159-2167.

DOI: 10.1016/j.msec.2013.01.036

Google Scholar

[86] S. Guo, A. Chu, H. Wu, C. Cai, X. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7. 9Sn alloy for biomedical applications, J. Alloy. Compd. 597 (2014) 211-216.

DOI: 10.1016/j.jallcom.2014.01.087

Google Scholar

[87] Y. Bai, S.J. Li, F. Prima, Y.L. Hao, R. Yang, Electrochemical corrosion behavior of Ti–24Nb–4Zr–8Sn alloy in a simulated physiological environment, Appl. Surf. Sci. 258 (2012) 4035-4040.

DOI: 10.1016/j.apsusc.2011.12.096

Google Scholar

[88] R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, M.S. Hahn, A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys, Acta Biomater. 8 (2012).

DOI: 10.1016/j.actbio.2012.03.034

Google Scholar

[89] E. Bertrand, T. Gloriant, D.M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy, J. Mech. Behav. Biomed. 3 (2010) 559-564.

DOI: 10.1016/j.jmbbm.2010.06.007

Google Scholar

[90] I. Milošev, G. Žerjav, J.M. Calderon Moreno, M. Popa, Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti–20Nb–10Zr–5Ta alloy, Electrochim. Acta 99 (2013) 176-189.

DOI: 10.1016/j.electacta.2013.03.086

Google Scholar

[91] M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Corrosion behavior of β titanium alloys for biomedical applications, Mat. Sci. Eng. C 31 (2011) 885-891.

DOI: 10.1016/j.msec.2011.02.005

Google Scholar

[92] C. Vasilescu, S.I. Drob, E.I. Neacsu, J.C. Mirza Rosca, Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids, Corros. Sci. 65 (2012) 431-440.

DOI: 10.1016/j.corsci.2012.08.042

Google Scholar

[93] R. Godley, D. Starosvetsky, I. Gotman, Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants, J. Mater. Sci - Mater. M 17 (2006) 63-67.

DOI: 10.1007/s10856-006-6330-6

Google Scholar

[94] Y.F. Zheng, B.L. Wang, J.G. Wang, C. Li, L.C. Zhao, Corrosion behavior of Ti–Nb–Sn shape memory alloys in different simulated body solutions, Mat. Sci. Eng. A 438-440 (2006) 891-895.

DOI: 10.1016/j.msea.2006.01.131

Google Scholar

[95] V.A. Sheremet'ev, S.M. Dubinskii, Yu.S. Zhukova, V. Brailovski, M.I. Petrzhik, S.D. Prokoshkin, Yu.A. Pustov, M.R. Filonov, Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti-Nb-(Ta, Zr) alloys, Met. Sci. Heat Treat. 55 (2013).

DOI: 10.1007/s11041-013-9588-6

Google Scholar

[96] Yu. Zhukova, A. Konopatsky, Yu. Pustov, Investigation of electrochemical behavior of novel superelastic biomedical alloys in simulated physiological media, Mater. Sci. Forum 738-739 (2013) 566-570.

DOI: 10.4028/www.scientific.net/msf.738-739.566

Google Scholar

[97] Yu.S. Zhukova, Yu.A. Pustov, M.R. Filonov, Kinetic Regularities and Mechanism of Formation of Nanosize Passive Films on Titanium Alloys for Medical Application and Their Electrochemical Behavior in Simulated Physiological Media, Protection of Metals and Physical Chemistry of Surfaces 48 (2012).

DOI: 10.1134/s2070205112030203

Google Scholar

[98] Y.S. Zhukova, Y.A. Pustov, A.S. Konopatsky, M.R. Filonov, Characterization of electrochemical behavior and surface oxide films on superelastic biomedical Ti–Nb–Ta alloy in simulated physiological solutions, J. Alloy. Compd. 586S (2014) S535-S538.

DOI: 10.1016/j.jallcom.2013.01.151

Google Scholar

[99] Yu.S. Zhukova, Yu.A. Pustov, A.S. Konopatsky, M.R. Filonov, S.D. Prokoshkin, Electrochemical behavior of novel superelastic biomedical alloys in simulated physiological media under cyclic load, J. Mater. Eng. Perform. (2014).

DOI: 10.1007/s11665-014-1061-1

Google Scholar

[100] Yu.A. Pustov, Yu.S. Zhukova, M.R. Filonov, The Role of Martensitic Transformation in Corrosion Fatigue Failure of Ti–22 Nb–6 Ta and Ti–22 Nb–6 Zr (at %) Medical Alloys, Protection of Metals and Physical Chemistry of Surfaces 50 (2014) 524-529.

DOI: 10.1134/s2070205114040145

Google Scholar

[101] S. Dubinskiy, V. Brailovski, S. Prokoshkin, K. Inaekyan, In-situ X-ray study of phase transformations in Ti–Nb-based SMA under variable stress–temperature conditions: preliminary results, Mater. Sci. Forum 738-739 (2013) 87-91.

DOI: 10.4028/www.scientific.net/msf.738-739.87

Google Scholar

[102] J.B. Nelson, D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals, Proc. Phys. Soc. 57 (1945) 160-177.

DOI: 10.1088/0959-5309/57/3/302

Google Scholar

[103] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, I.B. Trubitsyna, On the lattice parameters of phases in binary Ti–Ni shape memory alloys, Acta Mater. 52 (2004) 4479-4492.

DOI: 10.1016/j.actamat.2004.06.007

Google Scholar

[104] F. Sun, Y.L. Hao, S. Novak, T. Gloriant, P. Laheurte, F. Prima, A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at. %) alloys, J. Mech. Behav. Biomed. Mater. 4 (2011) 1864-1872.

DOI: 10.1016/j.jmbbm.2011.06.003

Google Scholar

[105] S.D. Prokoshkin, V. Brailovskii, S. Tyurenn, I. Yu. Khmelevskaya, A.V. Korotitskii, I.B. Trubitsyna, On the Lattice Parameters of the B19' Martensite in Binary Ti–Ni Shape-Memory Alloys, Phys. Met. Metallogr. 96 (2003) 55-64.

DOI: 10.1051/jp4:2003967

Google Scholar

[106] Yu.S. Zhukova, M.I. Petrzhik, S.D. Prokoshkin, Estimation of the Crystallographic Strain Limit during the Reversible β↔α' Martensitic Transformation in Titanium Shape Memory Alloys, Russ. Metall. 11 (2010) 1056-1062.

DOI: 10.1134/s003602951011011x

Google Scholar

[107] H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Texture and Shape Memory Behavior of Ti–22Nb–6Ta Alloy, Acta Mater. 54 (2006) 423-433.

DOI: 10.1016/j.actamat.2005.09.014

Google Scholar

[108] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys, Phys. Met. Metallogr. 112 (2011).

DOI: 10.1134/s0031918x11020244

Google Scholar

[109] T. Inamura, H. Hosoda, H.Y. Kim, S. Miyazaki, Antiphase boundary-like stacking fault in α"-martensite of disordered crystal structure in β-titanium shape memory alloy. Philos. Mag. 90 (2010) 3475-3498.

DOI: 10.1080/14786435.2010.489889

Google Scholar

[110] K. Otsuka, C.M. Wayman (Eds. ) Shape Memory Materials, Cambridge University Press, (1999).

Google Scholar

[111] S.D. Prokoshkin, L.V. Karabasova, D.E. Kaputkin, Dilatometric effects at martensitic transformations in high-carbon steels. Fiz. Met. Metalloved. 67 (1989) 622-624. [in Russian].

Google Scholar

[112] S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev, Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys, Acta Mater. 53 (2005).

DOI: 10.1016/j.actamat.2005.02.032

Google Scholar

[113] V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, M. Filonov, Bulk and porous metastable beta Ti-Nb-Zr(Ta) alloys for biomedical applications, Mater. Sci. Eng. C 31 (2011) 643-657.

DOI: 10.1016/j.msec.2010.12.008

Google Scholar

[114] Y. Al-Zain, H.Y. Kim, T. Koyano, H. Hosoda, T.H. Nam, S. Miyazaki, Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys, Acta Mater. 59 (2011) 1464-1473.

DOI: 10.1016/j.actamat.2010.11.008

Google Scholar

[115] S. Prokoshkin, A. Korotitskiy, V. Brailovski, K. Inaekyan, Effect of Dislocation Substructure and Grain Structure of B2-Austenite on Martensite Lattice Parameters and Transformation Lattice Strain in Binary Ti–Ni Alloys, Proc. Int. Conf. SMST, Tsukuba, 2007 (ASM Int., Materils Park, Ohio, 2008), pp.63-70.

DOI: 10.4028/www.scientific.net/msf.584-586.475

Google Scholar

[116] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, K.E. Inaekyan, S.M. Dubinskiy, A Comparative Study of Martensite Crystal Lattice in Nanostructured, Quenched and Deformed Ti–Ni Shape Memory Alloys, Proc. 8th Europ. Symp. on Martensitic Transformations, ESOMAT 2009 (EDP Science, Prague, 2009), pp.1-7.

DOI: 10.1051/esomat/200902028

Google Scholar

[117] S.M. Dubinskiy, S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, A.V. Korotitskiy, M.R. Filonov, M.I. Petrzhik, Structure Formation during Thermomechanical Processing of Ti-Nb-(Zr, Ta) Alloys and the Manifestation of the Shape-Memory Effect, Phys. Met. Metallogr. 112 (2011).

DOI: 10.1134/s0031918x11050206

Google Scholar

[118] M.L. Bernshtein, L.M. Kaputkina, S.D. Prokoshkin, N.A. Nikishov, A.V. Lyutsau, Structure of Hot-Deformed Austenite and Its Change upon Storage after Deformation, Fiz. Met. Metalloved. 42 (1976) 804-813.

Google Scholar

[119] S.D. Prokoshkin, V. Brailovskii, A.V. Korotitskii, K.E. Inaekyan, and A.M. Glezer, Specific Features of the Formation of the Microstructure of Titanium Nickelide upon Thermomechanical Treatment Including Cold Plastic Deformation to Degrees from Moderate to Severe, Phys. Met. Metallogr. 110 (2010).

DOI: 10.1134/s0031918x10090127

Google Scholar

[120] V. Brailovski, S. Prokoshkin, K. Inaekyan, S. Dubinskiy, Influence of Omega-Phase Precipitation Hardening on the Static and Dynamic Properties of Metastable Beta Ti-Nb-Zr and Ti-Nb-Ta Alloys, Mater. Sci. Forum. 738-739 (2013) 189-194.

DOI: 10.4028/www.scientific.net/msf.738-739.189

Google Scholar

[121] B.S. Hickman, The formation of omega phase in titanium and zirconium alloys: a review. J. Mater. Sci. 4 (1969) 554-563.

DOI: 10.1007/bf00550217

Google Scholar

[122] M. Geetha, A.K. Singh, A.K. Gogia, R. Asokamani, Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys, J. Alloy. Compd. 384 (2004) 131-144.

DOI: 10.1016/j.jallcom.2004.04.113

Google Scholar

[123] M.I. Petrzhik, E.A. Levashov, Modern Methods for Investigation Functional Surfaces of Advanced Materials by Mechanical Contact Testing, Crystallography Reports 52 (2007) 966-974.

DOI: 10.1134/s1063774507060065

Google Scholar

[124] Yu.S. Zhukova. Production and characterization of superelastic Ti-Nb-Ta, Ti-Nb-Zr alloys for medical application, unpublished work, (2013).

Google Scholar

[125] N. Cabrera, N.F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12 (1949) 163-184.

DOI: 10.1088/0034-4885/12/1/308

Google Scholar

[126] K. Hauffe, B. Ilschner, Uber den mechanismus der oxydation von nickel bei niedrigen temperature, Z. Elekrtochem. 58 (1954) 382-387. [in German].

Google Scholar

[127] E.M. Gutman, Mechanochemistry of materials, Cambridge International Science Publishing, (1998).

Google Scholar

[128] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Mater. 51 (2004) 225-229.

DOI: 10.1016/j.scriptamat.2004.04.011

Google Scholar

[129] H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti–Nb Binary Alloys, Acta Mater. 54 (2006) 2419-2429.

DOI: 10.1016/j.actamat.2006.01.019

Google Scholar

[130] Yu.A. Pustov, A.V. Kutuzov, M.R. Filonov, M.I. Belov, Study of failure causes of dental Ti-, Co- and Au-based alloys in simulated performance conditions. Part 2. Influence of cyclic dynamic load on corrosion and electrochemical behavior of orthopedic dental VT1-0 alloy in biological fluids, Corrosion: materials and protection 10 (2011).

Google Scholar

[131] M. Kh. Shorshorov, I.A. Stepanov, Yu.M. Flomenblit, V.V. Travkin, Phase and structure transformations induced by hydrogen in alloys on a titanium nickelide base, Phys. Met. Metallogr., 60 (1985) 109-115.

Google Scholar

[132] S. Yi, S. Gao, Fracture toughening mechanism of shape memory alloys due to martensite transformation, Int. J. Solids Struct., 37 (2000) 5315-5327.

DOI: 10.1016/s0020-7683(99)00213-9

Google Scholar

[133] S.W. Robertson, A. Mehta, A.R. Pelton, R.O. Ritchie, Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis, Acta Mater., 55 (2007).

DOI: 10.1016/j.actamat.2007.07.028

Google Scholar

[134] R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater. 57 (2009) 1188-1198.

DOI: 10.1016/j.actamat.2008.11.013

Google Scholar