[1]
M. Kohl, D. Dittmann, E. Quandt, B. Winzek, Thin film shape memory microvalves with adjustable operation temperature, Sensors and Actuators A 83 (2000) 214-219.
DOI: 10.1016/s0924-4247(99)00386-6
Google Scholar
[2]
M. Kohl, K.D. Skrobanek, S. Miyazaki, Development of stress-optimized shape memory microvalves, Sensors and Actuators A 72 (1999) 243-250.
DOI: 10.1016/s0924-4247(98)00221-0
Google Scholar
[3]
J.J. Gill, D.T. Chang, L.A. Momoda, G.P. Carman, Manufacturing issues of thin film NiTi microwrapper, Sensors and Actuators A 93 (2001) 148-156.
DOI: 10.1016/s0924-4247(01)00646-x
Google Scholar
[4]
T. Mineta, N. Kida, S. Namura, E. Makino, T. Sugawara, S Toh, T. Shibata, Pulsation sensor integrated with microvascular holding actuator for thrombosis monitoring, Sensors and Actuators A 143 (2008) 14-19.
DOI: 10.1016/j.sna.2007.07.011
Google Scholar
[5]
M. Tabib-Azar, B. Sutapun, M. Huff, Applications of TiNi thin film shape memory alloys in micro-opto-electro-mechanical systems, Sensors and Actuators A 77 (1999) 34-38.
DOI: 10.1016/s0924-4247(99)00053-9
Google Scholar
[6]
S.P. Belyaev, N.F. Morozov, A.I. Razov, A.E. Volkov, L. Wang, S. Shi, S. Gan, J. Chen, X. Dong, Shape Memory Effect in Titanium-Nickel after Preliminary Dynamic Deformation, Materials Science Forum 394-395 (2002) 337-340.
DOI: 10.4028/www.scientific.net/msf.394-395.337
Google Scholar
[7]
S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Materials Science and Engineering A 378 (2004) 122-124.
DOI: 10.1016/j.msea.2003.11.059
Google Scholar
[8]
A. Bragov, A. Galieva, V. Grigorieva, A. Danilov, A. Konstantinov, A. Lomunov, A. Motorin, E. Ostropiko, A. Razov, Functional Properties of TiNi Shape Memory Alloy after High Strain Rate Loading, Materials Science Forum 738-739 (2013) 326-331.
DOI: 10.4028/www.scientific.net/msf.738-739.326
Google Scholar
[9]
A. Bragov, A. Danilov, A. Konstantinov, A. Lomunov, A. Motorin and A. Razov, Mechanical and structural aspects of NiTi high-rate deformation: submitted to The Physics of Metals and Metallography (2014).
DOI: 10.1134/s0031918x15040031
Google Scholar
[10]
N. Morozov, Y. Petrov, Dynamics of Fracture, Springer Verlag, Berlin/London/New York, (2000).
Google Scholar
[11]
S.I. Krivosheev, Pulsed magnetic technique of material testing under impulsive loading, Technical Physics 50 (2005) 334-340.
DOI: 10.1134/1.1884733
Google Scholar
[12]
A. Gruzdkov, S. Krivosheev, Yu. Petrov, A. Razov, A. Utkin, Martensitic inelasticity of TiNi-shape memory alloy under pulsed loading, Materials Science and Engineering A 481-482 (2008) 105-108.
DOI: 10.1016/j.msea.2007.03.113
Google Scholar
[13]
A. Razov, A. Motorin, G. Nakhatova, Nonmonotonic shape memory in titanium nickelide, J. of Alloys and Compounds 5775 (2013) 164-167.
DOI: 10.1016/j.jallcom.2011.10.103
Google Scholar
[14]
A.M. Bragov, A.K. Lomunov, Methodological aspects of studying dynamic material properties using the Kolsky method, Int. J. Impact Engng. 16 (1995) 321-330.
DOI: 10.1016/0734-743x(95)93939-g
Google Scholar
[15]
J. Klepaczko, Application of the split Hopkinson pressure bar to fracture dynamics, in: J. Harding (Eds. ), Mechanical Properties at High Rates of Strain, Institute of physics, London, 1980, pp.201-214.
Google Scholar
[16]
T. Nicholas, Tensile testing of materials at high rates of strain, Exp. Mech. 21 (1981) 177-186.
Google Scholar
[17]
K. Ogawa, Characteristics of shape memory alloy at high strain rate, J. de Physique IV 49, Coll. C3 (1988) 115-120.
DOI: 10.1051/jphyscol:1988317
Google Scholar
[18]
J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia 50 (2002) 4225-4274.
DOI: 10.1016/s1359-6454(02)00257-4
Google Scholar
[19]
V. Zel'dovich, G. Sobyanina, T.V. Novoselova, Martensitic transformations in TiNi alloys with Ti3Ni4 precipitates, J. de Physique IV 7, Coll. C5 (1997) 299-304.
DOI: 10.1051/jp4:1997547
Google Scholar
[20]
N. Zhou, C. Shen, M.F. -X. Wagner, G. Eggeler, M.J. Mills, Y. Wang, Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni, Acta Materialia 58 (2010) 6685-6694.
DOI: 10.1016/j.actamat.2010.08.033
Google Scholar
[21]
W. Tirry, D. Schryvers, Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain, Nat. Mater. 8 (2009) 752-757.
DOI: 10.1038/nmat2488
Google Scholar
[22]
S. Cao, M. Nishida, D. Schryvers, Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti, Acta Materialia 59 (2011) 1780-1789.
DOI: 10.1016/j.actamat.2010.11.044
Google Scholar
[23]
T. Hara, T. Ohba, K. Otsuka, M. Nishida, Phase Transformation and Crystal Structures of Ti2Ni3 Precipitates in Ti-Ni Alloys, Materials Trans. JIM 38 (1997) 227-284.
DOI: 10.2320/matertrans1989.38.277
Google Scholar
[24]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[25]
M. Nishida, C.M. Wayman, A. Chiba, Electron-microscopy studies of the martensitic transformation in the aged Ti-51 at-percent-Ni shape memory alloy, Metallography 21 (1988) 275-291.
DOI: 10.1016/0026-0800(88)90025-0
Google Scholar
[26]
Y. Liu, Y. Li, K.T. Ramesh, J. van Humbeeck, High strain rate deformation of martensitic NiTi shape memory alloy, Scripta Materialia 41 (1) (1999) 89-95.
DOI: 10.1016/s1359-6462(99)00058-5
Google Scholar
[27]
S. Nemat-Nasser, J.Y. Choi, W-G. Guo, J.B. Isaacs, M. Taya, High Strain-Rate, Small Strain Response of a NiTi Shape-Memory Alloy, Journal of Engineering Materials and Technology 127 (2005) 83-89.
DOI: 10.1115/1.1839215
Google Scholar
[28]
S. Nemat-Nasser, J-Y. Choi, W-G. Guo, J. B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mechanics of Materials 37 (2005) 287-298.
DOI: 10.1016/j.mechmat.2004.03.007
Google Scholar
[29]
D.A. Miller, W.R. Thissell, D.A.S. Macdougall, Dynamic tensile plasticity and damage evolution in shape-memory Ni-Ti, J. de Physique IV 10, Coll. C9 (2000) 341-346.
DOI: 10.1051/jp4:2000957
Google Scholar
[30]
R.R. Adharapurapu, F. Jiang, K.S. Vecchio, G.T. Gray III, Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension-compression asymmetry, Acta Materialia 54 (2006) 4609-4620.
DOI: 10.1016/j.actamat.2006.05.047
Google Scholar
[31]
J. Zurbitu, S. Kustov, A. Zabaleta, E. Cesari, J. Aurrekoetxea, Thermo-mechanical behaviour of NiTi at impact, in: C. Cismasiu (Ed. ), Shape Memory Alloys, Sciyo, Rijeka, Croatia, 2010, pp.17-39.
DOI: 10.5772/9985
Google Scholar
[32]
J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Materialia 45 (1997) 673-700.
DOI: 10.1016/s1359-6454(96)00189-9
Google Scholar
[33]
J.A. Shaw, S. Kyriakides, Initiation and propagation of localized deformation in elasto- plastic strips under uniaxial tension, Int. J. Plast. 13 (1998) 837-871.
DOI: 10.1016/s0749-6419(97)00062-4
Google Scholar
[34]
Y. Liu, Y. Liu, J. van Humbeeck, Luders-like deformation associated with martensite reorientation in NiTi, Scripta Materialia 38 (1998) 1047-1055.
DOI: 10.1016/s1359-6462(98)00241-3
Google Scholar
[35]
Y. Liu, Z. Xie, J. van Humbeeck, L. Delay, Y. Liu, On the deformation of the twinned domain in NiTi shape memory alloys, Phil. Mag. A 80 (2000) 1935-(1953).
DOI: 10.1080/01418610050109581
Google Scholar
[36]
G.S. Tan, Y. Liu, P. Sittner, M. Sounders, Luders-like deformation associated with stress-induced martensitic transformation in NiTi, Scripta Materialia 50 (2004) 193-198.
DOI: 10.1016/j.scriptamat.2003.09.018
Google Scholar
[37]
P. Sittner, Y. Liu, V. Novak, On the origin of Luders-like deformation of NiTi shape memory alloys, Journal of the Mechanics and Physics of Solids 53 (2005) 1719-1746.
DOI: 10.1016/j.jmps.2005.03.005
Google Scholar
[38]
S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behaviour in a Ti-50. 6 at% Ni alloy, Scripta Materialia 15 (1981) 287-292.
DOI: 10.1016/0036-9748(81)90346-x
Google Scholar
[39]
G. Ravichandran, A. J. Rosakis, J. Hodowany, Ph. Rosakis, On the conversion of plastic work into heat during high-strain-rate deformation, in: M. D. Furnish, N. N. Thadhani, Y. Horie (Eds. ), Shock Compression of Condensed Matter, 2001, pp.557-562.
Google Scholar
[40]
F. Yang, K.H. Wu, Z.J. Pu, The Effect of Strain Rate and Sample Size Effect on the Superelastic Behavior of Superelastic Alloys, in: A.R. Pelton, D. Hodgson, S.M. Russel, T. Duerig (Eds. ), Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, March 2-6, 1997, Asilomar Conference Center, Pacific Grove, California, USA, 1997, pp.23-28.
DOI: 10.31399/asm.cp.smst2022p0049
Google Scholar
[41]
K.H. Wu, F. Yang, Z.J. Pu, J. Shi, The Effect of Strain Rate on Detwinning and Superelastic Behavior of Ni Ti Shape Memory Alloys, Journal of Intelligent Material Systems and Structures 7 (1996) 138-144.
DOI: 10.1177/1045389x9600700203
Google Scholar
[42]
A. Danilov, V. Muhonen, J. Tuukkanen, T. Jamsa, Role of phase stress in variations of cell behavior on NiTi, Materials Science Forum 738-739 (2013) 559-565.
DOI: 10.4028/www.scientific.net/msf.738-739.559
Google Scholar