Thermo-Mechanical and Functional Properties of NiTi Shape Memory Alloy at High Strain Rate Loading

Article Preview

Abstract:

The results of experimental studies performed during the past decade at Saint-Petersburg State University in collaboration with the Mechanics and Materials Science Research Centre at Ningbo University (China) and Lobachevsky State University of Nizhny Novgorod (Russia) with the aim of investigating the basic regularities of the high rate straining of NiTi shape memory alloys are reviewed. The studies were concerned with the mechanical behaviour of these materials at high rate compression and tension, and the effect of high rate straining on the basic functional properties (shape memory effect and two-way shape memory). Special attention was given to the application of dynamic fracture theory to NiTi shock loading and to methods for obtaining experimental findings concerning the theoretical parameters involved in the criteria for determining the transition of these materials from an elastic to an inelastic state while high rate straining was applied. The effect of the quasi-equilibrium structure of NiTi on martensitic transformations and the role of this structure in the formation of more complicated effects than shape memory and superelasticity were studied. The results obtained are used to elaborate a method for the improvement of the functional properties of NiTi and a procedure for reversing two-way shape memory induction.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M. Kohl, D. Dittmann, E. Quandt, B. Winzek, Thin film shape memory microvalves with adjustable operation temperature, Sensors and Actuators A 83 (2000) 214-219.

DOI: 10.1016/s0924-4247(99)00386-6

Google Scholar

[2] M. Kohl, K.D. Skrobanek, S. Miyazaki, Development of stress-optimized shape memory microvalves, Sensors and Actuators A 72 (1999) 243-250.

DOI: 10.1016/s0924-4247(98)00221-0

Google Scholar

[3] J.J. Gill, D.T. Chang, L.A. Momoda, G.P. Carman, Manufacturing issues of thin film NiTi microwrapper, Sensors and Actuators A 93 (2001) 148-156.

DOI: 10.1016/s0924-4247(01)00646-x

Google Scholar

[4] T. Mineta, N. Kida, S. Namura, E. Makino, T. Sugawara, S Toh, T. Shibata, Pulsation sensor integrated with microvascular holding actuator for thrombosis monitoring, Sensors and Actuators A 143 (2008) 14-19.

DOI: 10.1016/j.sna.2007.07.011

Google Scholar

[5] M. Tabib-Azar, B. Sutapun, M. Huff, Applications of TiNi thin film shape memory alloys in micro-opto-electro-mechanical systems, Sensors and Actuators A 77 (1999) 34-38.

DOI: 10.1016/s0924-4247(99)00053-9

Google Scholar

[6] S.P. Belyaev, N.F. Morozov, A.I. Razov, A.E. Volkov, L. Wang, S. Shi, S. Gan, J. Chen, X. Dong, Shape Memory Effect in Titanium-Nickel after Preliminary Dynamic Deformation, Materials Science Forum 394-395 (2002) 337-340.

DOI: 10.4028/www.scientific.net/msf.394-395.337

Google Scholar

[7] S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Materials Science and Engineering A 378 (2004) 122-124.

DOI: 10.1016/j.msea.2003.11.059

Google Scholar

[8] A. Bragov, A. Galieva, V. Grigorieva, A. Danilov, A. Konstantinov, A. Lomunov, A. Motorin, E. Ostropiko, A. Razov, Functional Properties of TiNi Shape Memory Alloy after High Strain Rate Loading, Materials Science Forum 738-739 (2013) 326-331.

DOI: 10.4028/www.scientific.net/msf.738-739.326

Google Scholar

[9] A. Bragov, A. Danilov, A. Konstantinov, A. Lomunov, A. Motorin and A. Razov, Mechanical and structural aspects of NiTi high-rate deformation: submitted to The Physics of Metals and Metallography (2014).

DOI: 10.1134/s0031918x15040031

Google Scholar

[10] N. Morozov, Y. Petrov, Dynamics of Fracture, Springer Verlag, Berlin/London/New York, (2000).

Google Scholar

[11] S.I. Krivosheev, Pulsed magnetic technique of material testing under impulsive loading, Technical Physics 50 (2005) 334-340.

DOI: 10.1134/1.1884733

Google Scholar

[12] A. Gruzdkov, S. Krivosheev, Yu. Petrov, A. Razov, A. Utkin, Martensitic inelasticity of TiNi-shape memory alloy under pulsed loading, Materials Science and Engineering A 481-482 (2008) 105-108.

DOI: 10.1016/j.msea.2007.03.113

Google Scholar

[13] A. Razov, A. Motorin, G. Nakhatova, Nonmonotonic shape memory in titanium nickelide, J. of Alloys and Compounds 5775 (2013) 164-167.

DOI: 10.1016/j.jallcom.2011.10.103

Google Scholar

[14] A.M. Bragov, A.K. Lomunov, Methodological aspects of studying dynamic material properties using the Kolsky method, Int. J. Impact Engng. 16 (1995) 321-330.

DOI: 10.1016/0734-743x(95)93939-g

Google Scholar

[15] J. Klepaczko, Application of the split Hopkinson pressure bar to fracture dynamics, in: J. Harding (Eds. ), Mechanical Properties at High Rates of Strain, Institute of physics, London, 1980, pp.201-214.

Google Scholar

[16] T. Nicholas, Tensile testing of materials at high rates of strain, Exp. Mech. 21 (1981) 177-186.

Google Scholar

[17] K. Ogawa, Characteristics of shape memory alloy at high strain rate, J. de Physique IV 49, Coll. C3 (1988) 115-120.

DOI: 10.1051/jphyscol:1988317

Google Scholar

[18] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia 50 (2002) 4225-4274.

DOI: 10.1016/s1359-6454(02)00257-4

Google Scholar

[19] V. Zel'dovich, G. Sobyanina, T.V. Novoselova, Martensitic transformations in TiNi alloys with Ti3Ni4 precipitates, J. de Physique IV 7, Coll. C5 (1997) 299-304.

DOI: 10.1051/jp4:1997547

Google Scholar

[20] N. Zhou, C. Shen, M.F. -X. Wagner, G. Eggeler, M.J. Mills, Y. Wang, Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni, Acta Materialia 58 (2010) 6685-6694.

DOI: 10.1016/j.actamat.2010.08.033

Google Scholar

[21] W. Tirry, D. Schryvers, Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain, Nat. Mater. 8 (2009) 752-757.

DOI: 10.1038/nmat2488

Google Scholar

[22] S. Cao, M. Nishida, D. Schryvers, Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti, Acta Materialia 59 (2011) 1780-1789.

DOI: 10.1016/j.actamat.2010.11.044

Google Scholar

[23] T. Hara, T. Ohba, K. Otsuka, M. Nishida, Phase Transformation and Crystal Structures of Ti2Ni3 Precipitates in Ti-Ni Alloys, Materials Trans. JIM 38 (1997) 227-284.

DOI: 10.2320/matertrans1989.38.277

Google Scholar

[24] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[25] M. Nishida, C.M. Wayman, A. Chiba, Electron-microscopy studies of the martensitic transformation in the aged Ti-51 at-percent-Ni shape memory alloy, Metallography 21 (1988) 275-291.

DOI: 10.1016/0026-0800(88)90025-0

Google Scholar

[26] Y. Liu, Y. Li, K.T. Ramesh, J. van Humbeeck, High strain rate deformation of martensitic NiTi shape memory alloy, Scripta Materialia 41 (1) (1999) 89-95.

DOI: 10.1016/s1359-6462(99)00058-5

Google Scholar

[27] S. Nemat-Nasser, J.Y. Choi, W-G. Guo, J.B. Isaacs, M. Taya, High Strain-Rate, Small Strain Response of a NiTi Shape-Memory Alloy, Journal of Engineering Materials and Technology 127 (2005) 83-89.

DOI: 10.1115/1.1839215

Google Scholar

[28] S. Nemat-Nasser, J-Y. Choi, W-G. Guo, J. B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mechanics of Materials 37 (2005) 287-298.

DOI: 10.1016/j.mechmat.2004.03.007

Google Scholar

[29] D.A. Miller, W.R. Thissell, D.A.S. Macdougall, Dynamic tensile plasticity and damage evolution in shape-memory Ni-Ti, J. de Physique IV 10, Coll. C9 (2000) 341-346.

DOI: 10.1051/jp4:2000957

Google Scholar

[30] R.R. Adharapurapu, F. Jiang, K.S. Vecchio, G.T. Gray III, Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension-compression asymmetry, Acta Materialia 54 (2006) 4609-4620.

DOI: 10.1016/j.actamat.2006.05.047

Google Scholar

[31] J. Zurbitu, S. Kustov, A. Zabaleta, E. Cesari, J. Aurrekoetxea, Thermo-mechanical behaviour of NiTi at impact, in: C. Cismasiu (Ed. ), Shape Memory Alloys, Sciyo, Rijeka, Croatia, 2010, pp.17-39.

DOI: 10.5772/9985

Google Scholar

[32] J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Materialia 45 (1997) 673-700.

DOI: 10.1016/s1359-6454(96)00189-9

Google Scholar

[33] J.A. Shaw, S. Kyriakides, Initiation and propagation of localized deformation in elasto- plastic strips under uniaxial tension, Int. J. Plast. 13 (1998) 837-871.

DOI: 10.1016/s0749-6419(97)00062-4

Google Scholar

[34] Y. Liu, Y. Liu, J. van Humbeeck, Luders-like deformation associated with martensite reorientation in NiTi, Scripta Materialia 38 (1998) 1047-1055.

DOI: 10.1016/s1359-6462(98)00241-3

Google Scholar

[35] Y. Liu, Z. Xie, J. van Humbeeck, L. Delay, Y. Liu, On the deformation of the twinned domain in NiTi shape memory alloys, Phil. Mag. A 80 (2000) 1935-(1953).

DOI: 10.1080/01418610050109581

Google Scholar

[36] G.S. Tan, Y. Liu, P. Sittner, M. Sounders, Luders-like deformation associated with stress-induced martensitic transformation in NiTi, Scripta Materialia 50 (2004) 193-198.

DOI: 10.1016/j.scriptamat.2003.09.018

Google Scholar

[37] P. Sittner, Y. Liu, V. Novak, On the origin of Luders-like deformation of NiTi shape memory alloys, Journal of the Mechanics and Physics of Solids 53 (2005) 1719-1746.

DOI: 10.1016/j.jmps.2005.03.005

Google Scholar

[38] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behaviour in a Ti-50. 6 at% Ni alloy, Scripta Materialia 15 (1981) 287-292.

DOI: 10.1016/0036-9748(81)90346-x

Google Scholar

[39] G. Ravichandran, A. J. Rosakis, J. Hodowany, Ph. Rosakis, On the conversion of plastic work into heat during high-strain-rate deformation, in: M. D. Furnish, N. N. Thadhani, Y. Horie (Eds. ), Shock Compression of Condensed Matter, 2001, pp.557-562.

Google Scholar

[40] F. Yang, K.H. Wu, Z.J. Pu, The Effect of Strain Rate and Sample Size Effect on the Superelastic Behavior of Superelastic Alloys, in: A.R. Pelton, D. Hodgson, S.M. Russel, T. Duerig (Eds. ), Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, March 2-6, 1997, Asilomar Conference Center, Pacific Grove, California, USA, 1997, pp.23-28.

DOI: 10.31399/asm.cp.smst2022p0049

Google Scholar

[41] K.H. Wu, F. Yang, Z.J. Pu, J. Shi, The Effect of Strain Rate on Detwinning and Superelastic Behavior of Ni Ti Shape Memory Alloys, Journal of Intelligent Material Systems and Structures 7 (1996) 138-144.

DOI: 10.1177/1045389x9600700203

Google Scholar

[42] A. Danilov, V. Muhonen, J. Tuukkanen, T. Jamsa, Role of phase stress in variations of cell behavior on NiTi, Materials Science Forum 738-739 (2013) 559-565.

DOI: 10.4028/www.scientific.net/msf.738-739.559

Google Scholar