[1]
J. Van Humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A 273-275 (1999) 134–48.
Google Scholar
[2]
M.H. Wu, L.M. Schetky, Industrial applications for shape memory alloys, in: International conference on shape memory and superelastic technologies. Pacific Grove, California, USA; 2000. p.171–82.
Google Scholar
[3]
D. Stoeckel, Shape memory actuators for automotive applications, Mater. Des. 11 (1990) 302-307.
Google Scholar
[4]
C. Bil, K. Massey, E.J. Abdullah, Wing morphing control with shape memory alloy actuators, J. Intell. Mater. Syst. Struct. 24 (2013) 879-898.
DOI: 10.1177/1045389x12471866
Google Scholar
[5]
D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 221 (2007) 535-552.
DOI: 10.1243/09544100jaero211
Google Scholar
[6]
L. McDonald Schetky, Shape memory alloy applications in space systems, Mater. Des. 12 (1991) 29-32.
DOI: 10.1016/0261-3069(91)90089-m
Google Scholar
[7]
M. Kheirikhah, S. Rabiee, M. Edalat, A review of shape memory alloy actuators in robotics, in: J. Ruiz-del-Solar, E. Chown, P. Plöger (Eds. ), RoboCup 2010: Robot Soccer World Cup XIV. Berlin Heidelberg: Springer; 2011. pp.206-217.
DOI: 10.1007/978-3-642-20217-9_18
Google Scholar
[8]
M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Ind. Rob.: Int. J. 34 (2007) 285-94.
DOI: 10.1108/01439910710749609
Google Scholar
[9]
L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys, J. Metall. 2011 (2011) 501483, 15 pp.
Google Scholar
[10]
C. Song, History and current situation of shape memory alloys devices for minimally invasive surgery, Open Med. Dev. J. 2 (2010) 24-31.
DOI: 10.2174/1875181401002020024
Google Scholar
[11]
T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng. A 273–275 (1999) 149-160.
DOI: 10.1016/s0921-5093(99)00294-4
Google Scholar
[12]
N.B. Morgan, Medical shape memory alloy applications – the market and its products, Mater. Sci. Eng. A 378 (2004) 16-23.
Google Scholar
[13]
G. Songa, N. Maa, H. -N. Lib, Applications of shape memory alloys in civil structures, Eng. Struct. 28 (2006) 1266-1274.
Google Scholar
[14]
L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, et al. Stimulus responsive shape memory materials: a review, Mater. Des. 33 (2012) 577-640.
DOI: 10.1016/j.matdes.2011.04.065
Google Scholar
[15]
H. Kahny, M.A. Huffz, A.H. Heuer, The TiNi shape-memory alloy and its applications for MEMS, Micromech. Microeng. 8 (1998) 213-221.
DOI: 10.1088/0960-1317/8/3/007
Google Scholar
[16]
H. Fujita, H. Toshiyoshi, Micro actuators and their applications, Microelectron. J. 29 (1998) 637-640.
Google Scholar
[17]
Y. Bellouard, Shape memory alloys for microsystems: A review from a material research perspective, Mater. Sci. Eng. A 481-482 (2008) 582-589.
DOI: 10.1016/j.msea.2007.02.166
Google Scholar
[18]
M. Kohl, Shape memory microactuators, in: Springer Book Series on Microtechnology and MEMS, Springer-Verlag, Berlin, Heidelberg, (2004).
Google Scholar
[19]
S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, et al. New materials for micro-scale sensors and actuators: An engineering review, Mater. Sci. Eng. A R 56 (2007) 1-129.
Google Scholar
[20]
H.J. Zhang, C.J. Qiu, Characterization and MEMS application of low temperature TiNi(Cu) shape memory thin films, Mater. Sci. Eng. A 438–440 (2006) 1106-1109.
DOI: 10.1016/j.msea.2006.01.114
Google Scholar
[21]
M. Kohl, Shape memory microactuators (microtechnology and MEMS), 1 ed. Heidelberg: Springer-Verlag Berlin, (2010).
Google Scholar
[22]
A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors and Actuators A 158 (2010) 149-160.
DOI: 10.1016/j.sna.2009.12.020
Google Scholar
[23]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[24]
A.V. Shelyakov, N.M. Matveeva, S.G. Larin, Rapidly quenched TiNi-based shape memory alloys, in: F. Trochu, V. Brailovski (Eds. ), Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications., Canadian Inst. of Mining, Metallurgy and Petrolium, 1999, pp.295-303.
Google Scholar
[25]
N.M. Matveeva, V.G. Pushin, A.V. Shelyakov, Yu.A. Bykovsky, S.B. Volkova, V.S. Kraposhin, Effect of conditions of crystallization of amorphous TiNi-TiCu alloys on structure and shape memory, The Physics of Metals and Metallography 83 (1997).
Google Scholar
[26]
P.L. Potapov, S.E. Kulkova, A.V. Shelyakov, K. Okutsu, S. Miyazaki, D. Schryvers, Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics, J. Phys. IV France 112 (2003) 727-730.
DOI: 10.1051/jp4:2003985
Google Scholar
[27]
J. Morgiel, E. Cesari, J. Pons, A. Pasko, J. Dutkiewicz, Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons, Journal of Material Science 37 (2002) 5319-5327.
DOI: 10.1023/a:1021077025254
Google Scholar
[28]
S. Park, J. Oh, Y. Kim, T. Nam, Microstructures and mechanical properties of Ti-25Ni-25Cu (at. %) alloy ribbons, Mater. Sci. Eng. A 438–440 (2006) 695-698.
DOI: 10.1016/j.msea.2006.02.186
Google Scholar
[29]
P. Schlossmacher, N. Boucharat, G. Wilde, H. Roesner, A.V. Shelyakov, Crystallization studies of amorphous melt-spun Ti50Ni25Cu25, J. Phys. IV 112 (2003) 731-734.
DOI: 10.1051/jp4:2003986
Google Scholar
[30]
C. Lexcellent, S. Leclercq, B. Gabry, G. Bourbon, The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model, Int. J. Plast. 16 (2000) 1155-1168.
DOI: 10.1016/s0749-6419(00)00005-x
Google Scholar
[31]
A.V. Shelyakov, Yu.A. Bykovsky, N.M. Matveeva, Yu.K. Kovneristy, Formation of two-way shape memory effect in rapid-quenched TiNiCu alloys, J. de Phys. IV, Coll. C8, 5 (1995) 713-716.
DOI: 10.1051/jp4/199558713
Google Scholar
[32]
Q. Fu, J.K. Luo, A.J. Flewitt, S.E. Ong, S. Zhang, Microactuators of free-standing TiNiCu films, Smart Mater. Struct. 16 (2007) 2651-2657.
DOI: 10.1088/0964-1726/16/6/070
Google Scholar
[33]
T.B. Lagrange, R. Gotthardt, Microstructural evolution and thermo-mechanical response of Ni ion irradiated TiNi SMA thin films, J. Optoelectr. Adv. Mater. 5 (2003) 313-318.
Google Scholar
[34]
H. Kahn, M.A. Huff, A.H. Heuer, The TiNi shape memory alloy and its applications for MEMS, J. Micromech. Microeng. 8 (1998) 213-221.
DOI: 10.1088/0960-1317/8/3/007
Google Scholar
[35]
Y. Freed, J. Aboudi, Micromechanical prediction of the two-way shape memory effect in shape memory alloy composites, Int. J. Solids Struct. 46 (2009) 1634-1647.
DOI: 10.1016/j.ijsolstr.2008.12.004
Google Scholar
[36]
J.J. Gill, K. Ho, G.P. Carman, Three-dimensional thin-film shape-memory alloy micro-actuator with two-way effect, J. MEMS 11 (2002) 68-77.
DOI: 10.1109/84.982865
Google Scholar
[37]
E. Makino, T. Mitsuya, T. Shibata, Fabrication of TiNi shape memory micropump, Sens. Actuators A 88 (2001) 256-262.
DOI: 10.1016/s0924-4247(00)00522-7
Google Scholar
[38]
F.E. Luborsky, Amorphous Metallic Alloys, Butterworth-Heinemann, London, (1983).
Google Scholar
[39]
R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[40]
S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, Trubitsyna I.B., et al. Structure evolution upon severe plastic deformation of Ti-Ni-based shape memory alloys, Phys. Met. Metallogr. 97 (2004) 619-625.
DOI: 10.1002/3527602461.ch3j
Google Scholar
[41]
R.Z. Valiev, A.A. Nazarov, Bulk nanostructured materials by SPD processing: techniques, microstructures and properties, in: M.J. Zehetbauer, Y.T. Zhu (Eds. ), Bulk Nanostructured Materials, 2009, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.21-48.
DOI: 10.1002/9783527626892.ch2
Google Scholar
[42]
J.K. Luo, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Comparison of microtweezers based on three lateral thermal actuator configurations, J. Micromech. Microeng. 15 (2005) 1294-1302.
DOI: 10.1088/0960-1317/15/6/022
Google Scholar
[43]
S.I. Anisimov, E.A. Imas, G.S. Romanov, et al. Deystviye izlucheniy bol'shoy moshchnosti na metally. Moscow: Nauka. 1970 [in Russian].
Google Scholar
[44]
P. Misaelides, Application of particle and laser beams in materials technology, Dordrecht–Boston–London: Kluwer Academic Publishes. (1994).
Google Scholar
[45]
M. Rykalina Vozdeystviye kontsentrirovannykh potokov energii na materialy, Nauka, Moscow, 1985 [in Russian].
Google Scholar
[46]
A.D. Pogrebnyak, M.K. Kylyshkanov, D.L. Alontseva, et al. Structure and properties of aluminiums alloys after treatment by the concentrated flows of energy, FIP PSE 5 (2007) 34-38.
Google Scholar
[47]
A.L. Gavze, A.P. Matevos'yan, A.V. Nesterovich, B. Yu. Bogdanovich, Hardening of the surface of titanium alloy in an alternating high-voltage discharge in a flow of liquid, Met. Sci. Heat Treat. 47 (2005) 66-70.
DOI: 10.1007/s11041-005-0033-3
Google Scholar
[48]
B. Yu. Bogdanovich, N.V. Volkov, N.A. Len', A.V. Nesterovich, A.I. Starostin, Experimental investigation of materials subjected to the action of discharges in the liquid flow, Inzhenernaya Fizika 2 (2000) 50-54 [in Russian].
Google Scholar