Development of Two-Way Shape Memory Material on the Basis of Amorphous-Crystalline TiNiCu Melt-Spun Ribbons for Micromechanical Applications

Article Preview

Abstract:

The paper deals with the development of a structural composite material exhibiting two-way shape memory effect. A Ti-Ni-Cu alloy was produced by the melt spinning technique at different cooling rates in the form of a ribbon with a thickness of approximately 40 μm. Layered amorphous-crystalline structure of the ribbon was obtained by varying the alloy composition and the cooling rate and by modification of the alloy structure with the external extreme action (pulsed laser emission and periodical discharge in the liquid flow). The relation between thicknesses of the amorphous and crystalline layers was changed by the variation of parameters of the melt spinning and the external actions as well as with the aid of electrochemical polishing. The samples were characterized by means of inverted metallographic and scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis and microhardness measurements. It has been shown that the layered amorphous-crystalline composite material demonstrates clearly defined two-way shape memory behavior without any additional thermomechanical treatments and can be used to create micromechanical devices with a higher level of functional properties.

You might also be interested in these eBooks

Info:

[1] J. Van Humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A 273-275 (1999) 134–48.

Google Scholar

[2] M.H. Wu, L.M. Schetky, Industrial applications for shape memory alloys, in: International conference on shape memory and superelastic technologies. Pacific Grove, California, USA; 2000. p.171–82.

Google Scholar

[3] D. Stoeckel, Shape memory actuators for automotive applications, Mater. Des. 11 (1990) 302-307.

Google Scholar

[4] C. Bil, K. Massey, E.J. Abdullah, Wing morphing control with shape memory alloy actuators, J. Intell. Mater. Syst. Struct. 24 (2013) 879-898.

DOI: 10.1177/1045389x12471866

Google Scholar

[5] D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 221 (2007) 535-552.

DOI: 10.1243/09544100jaero211

Google Scholar

[6] L. McDonald Schetky, Shape memory alloy applications in space systems, Mater. Des. 12 (1991) 29-32.

DOI: 10.1016/0261-3069(91)90089-m

Google Scholar

[7] M. Kheirikhah, S. Rabiee, M. Edalat, A review of shape memory alloy actuators in robotics, in: J. Ruiz-del-Solar, E. Chown, P. Plöger (Eds. ), RoboCup 2010: Robot Soccer World Cup XIV. Berlin Heidelberg: Springer; 2011. pp.206-217.

DOI: 10.1007/978-3-642-20217-9_18

Google Scholar

[8] M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Ind. Rob.: Int. J. 34 (2007) 285-94.

DOI: 10.1108/01439910710749609

Google Scholar

[9] L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys, J. Metall. 2011 (2011) 501483, 15 pp.

Google Scholar

[10] C. Song, History and current situation of shape memory alloys devices for minimally invasive surgery, Open Med. Dev. J. 2 (2010) 24-31.

DOI: 10.2174/1875181401002020024

Google Scholar

[11] T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng. A 273–275 (1999) 149-160.

DOI: 10.1016/s0921-5093(99)00294-4

Google Scholar

[12] N.B. Morgan, Medical shape memory alloy applications – the market and its products, Mater. Sci. Eng. A 378 (2004) 16-23.

Google Scholar

[13] G. Songa, N. Maa, H. -N. Lib, Applications of shape memory alloys in civil structures, Eng. Struct. 28 (2006) 1266-1274.

Google Scholar

[14] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, et al. Stimulus responsive shape memory materials: a review, Mater. Des. 33 (2012) 577-640.

DOI: 10.1016/j.matdes.2011.04.065

Google Scholar

[15] H. Kahny, M.A. Huffz, A.H. Heuer, The TiNi shape-memory alloy and its applications for MEMS, Micromech. Microeng. 8 (1998) 213-221.

DOI: 10.1088/0960-1317/8/3/007

Google Scholar

[16] H. Fujita, H. Toshiyoshi, Micro actuators and their applications, Microelectron. J. 29 (1998) 637-640.

Google Scholar

[17] Y. Bellouard, Shape memory alloys for microsystems: A review from a material research perspective, Mater. Sci. Eng. A 481-482 (2008) 582-589.

DOI: 10.1016/j.msea.2007.02.166

Google Scholar

[18] M. Kohl, Shape memory microactuators, in: Springer Book Series on Microtechnology and MEMS, Springer-Verlag, Berlin, Heidelberg, (2004).

Google Scholar

[19] S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, et al. New materials for micro-scale sensors and actuators: An engineering review, Mater. Sci. Eng. A R 56 (2007) 1-129.

Google Scholar

[20] H.J. Zhang, C.J. Qiu, Characterization and MEMS application of low temperature TiNi(Cu) shape memory thin films, Mater. Sci. Eng. A 438–440 (2006) 1106-1109.

DOI: 10.1016/j.msea.2006.01.114

Google Scholar

[21] M. Kohl, Shape memory microactuators (microtechnology and MEMS), 1 ed. Heidelberg: Springer-Verlag Berlin, (2010).

Google Scholar

[22] A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors and Actuators A 158 (2010) 149-160.

DOI: 10.1016/j.sna.2009.12.020

Google Scholar

[23] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[24] A.V. Shelyakov, N.M. Matveeva, S.G. Larin, Rapidly quenched TiNi-based shape memory alloys, in: F. Trochu, V. Brailovski (Eds. ), Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications., Canadian Inst. of Mining, Metallurgy and Petrolium, 1999, pp.295-303.

Google Scholar

[25] N.M. Matveeva, V.G. Pushin, A.V. Shelyakov, Yu.A. Bykovsky, S.B. Volkova, V.S. Kraposhin, Effect of conditions of crystallization of amorphous TiNi-TiCu alloys on structure and shape memory, The Physics of Metals and Metallography 83 (1997).

Google Scholar

[26] P.L. Potapov, S.E. Kulkova, A.V. Shelyakov, K. Okutsu, S. Miyazaki, D. Schryvers, Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics, J. Phys. IV France 112 (2003) 727-730.

DOI: 10.1051/jp4:2003985

Google Scholar

[27] J. Morgiel, E. Cesari, J. Pons, A. Pasko, J. Dutkiewicz, Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons, Journal of Material Science 37 (2002) 5319-5327.

DOI: 10.1023/a:1021077025254

Google Scholar

[28] S. Park, J. Oh, Y. Kim, T. Nam, Microstructures and mechanical properties of Ti-25Ni-25Cu (at. %) alloy ribbons, Mater. Sci. Eng. A 438–440 (2006) 695-698.

DOI: 10.1016/j.msea.2006.02.186

Google Scholar

[29] P. Schlossmacher, N. Boucharat, G. Wilde, H. Roesner, A.V. Shelyakov, Crystallization studies of amorphous melt-spun Ti50Ni25Cu25, J. Phys. IV 112 (2003) 731-734.

DOI: 10.1051/jp4:2003986

Google Scholar

[30] C. Lexcellent, S. Leclercq, B. Gabry, G. Bourbon, The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model, Int. J. Plast. 16 (2000) 1155-1168.

DOI: 10.1016/s0749-6419(00)00005-x

Google Scholar

[31] A.V. Shelyakov, Yu.A. Bykovsky, N.M. Matveeva, Yu.K. Kovneristy, Formation of two-way shape memory effect in rapid-quenched TiNiCu alloys, J. de Phys. IV, Coll. C8, 5 (1995) 713-716.

DOI: 10.1051/jp4/199558713

Google Scholar

[32] Q. Fu, J.K. Luo, A.J. Flewitt, S.E. Ong, S. Zhang, Microactuators of free-standing TiNiCu films, Smart Mater. Struct. 16 (2007) 2651-2657.

DOI: 10.1088/0964-1726/16/6/070

Google Scholar

[33] T.B. Lagrange, R. Gotthardt, Microstructural evolution and thermo-mechanical response of Ni ion irradiated TiNi SMA thin films, J. Optoelectr. Adv. Mater. 5 (2003) 313-318.

Google Scholar

[34] H. Kahn, M.A. Huff, A.H. Heuer, The TiNi shape memory alloy and its applications for MEMS, J. Micromech. Microeng. 8 (1998) 213-221.

DOI: 10.1088/0960-1317/8/3/007

Google Scholar

[35] Y. Freed, J. Aboudi, Micromechanical prediction of the two-way shape memory effect in shape memory alloy composites, Int. J. Solids Struct. 46 (2009) 1634-1647.

DOI: 10.1016/j.ijsolstr.2008.12.004

Google Scholar

[36] J.J. Gill, K. Ho, G.P. Carman, Three-dimensional thin-film shape-memory alloy micro-actuator with two-way effect, J. MEMS 11 (2002) 68-77.

DOI: 10.1109/84.982865

Google Scholar

[37] E. Makino, T. Mitsuya, T. Shibata, Fabrication of TiNi shape memory micropump, Sens. Actuators A 88 (2001) 256-262.

DOI: 10.1016/s0924-4247(00)00522-7

Google Scholar

[38] F.E. Luborsky, Amorphous Metallic Alloys, Butterworth-Heinemann, London, (1983).

Google Scholar

[39] R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[40] S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin, Trubitsyna I.B., et al. Structure evolution upon severe plastic deformation of Ti-Ni-based shape memory alloys, Phys. Met. Metallogr. 97 (2004) 619-625.

DOI: 10.1002/3527602461.ch3j

Google Scholar

[41] R.Z. Valiev, A.A. Nazarov, Bulk nanostructured materials by SPD processing: techniques, microstructures and properties, in: M.J. Zehetbauer, Y.T. Zhu (Eds. ), Bulk Nanostructured Materials, 2009, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.21-48.

DOI: 10.1002/9783527626892.ch2

Google Scholar

[42] J.K. Luo, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Comparison of microtweezers based on three lateral thermal actuator configurations, J. Micromech. Microeng. 15 (2005) 1294-1302.

DOI: 10.1088/0960-1317/15/6/022

Google Scholar

[43] S.I. Anisimov, E.A. Imas, G.S. Romanov, et al. Deystviye izlucheniy bol'shoy moshchnosti na metally. Moscow: Nauka. 1970 [in Russian].

Google Scholar

[44] P. Misaelides, Application of particle and laser beams in materials technology, Dordrecht–Boston–London: Kluwer Academic Publishes. (1994).

Google Scholar

[45] M. Rykalina Vozdeystviye kontsentrirovannykh potokov energii na materialy, Nauka, Moscow, 1985 [in Russian].

Google Scholar

[46] A.D. Pogrebnyak, M.K. Kylyshkanov, D.L. Alontseva, et al. Structure and properties of aluminiums alloys after treatment by the concentrated flows of energy, FIP PSE 5 (2007) 34-38.

Google Scholar

[47] A.L. Gavze, A.P. Matevos'yan, A.V. Nesterovich, B. Yu. Bogdanovich, Hardening of the surface of titanium alloy in an alternating high-voltage discharge in a flow of liquid, Met. Sci. Heat Treat. 47 (2005) 66-70.

DOI: 10.1007/s11041-005-0033-3

Google Scholar

[48] B. Yu. Bogdanovich, N.V. Volkov, N.A. Len', A.V. Nesterovich, A.I. Starostin, Experimental investigation of materials subjected to the action of discharges in the liquid flow, Inzhenernaya Fizika 2 (2000) 50-54 [in Russian].

Google Scholar