High-Strength Precipitation-Hardening Austenitic Steels with Shape Memory Effect

Article Preview

Abstract:

It has been shown that the conversion of austenitic manganese steels – via their purposeful alloying – into the class of precipitation-hardening materials (when aging leads to the formation of VC carbides) provides for high values (2.5-2.7 %) of the shape memory effect (SME) and considerable improvement in strength characteristics of the steels after aging and implementation of γ→ε→γ transformations. Strength characteristics and SME can be governed in wide limits by means of controlled changing of the amount, dispersity, and distribution of VC carbides during aging. The shape memory effect with a reversible deformation of 1.6—1.7% in the metastable steels such as 0.20C-20Mn-2Si-1V with an ε–martensite initial structure is obtained as a result of the retwinning of ε martensite during cold deformation and the subsequent ε→γ transformation during heating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

575-599

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.I. Nikolkin, L.I. Lysak, and Yu.N. Makogon, Martensitic phase diagrams of manganese steels, Phys. Met. Metallogr. 32 (1971) 200-203.

Google Scholar

[2] V.I. Zel'dovich, A.I. Uvarov, T.P. Vasechkina, et al., Martensitic transformations during deformation, and mechanical properties of austenitic chromium-manganese steels. I. Dilatation effects during e -g transformation in deformed steels, Phys. Met. Metallogr. 40 (1975).

Google Scholar

[3] R. Enami, A. Nagasawa, and S. Nenno, Reversible shape memory effect, Scr. Metall. 9 (1975) 941-948.

DOI: 10.1016/0036-9748(75)90549-9

Google Scholar

[4] N.A. Tereshchenko, V.V. Sagaradze, A.I. Uvarov, and K.A. Malyshev, Aging steels with a structure of ε-martensite, Phys. Met. Metallogr. 53 (1971) 110-116.

Google Scholar

[5] K. Murakami, H. Otsuka, H. G. Suzuki, and S. Matsuda, Complete shape memory effect in polycrystalline Fe-Mn-Si, in: Materials of conference ICOMAT-86, Ed. by Imao Tamura, Japanese Institute of Metals, Sendai, 1987, 985-988.

Google Scholar

[6] A. Baruj, T. Kikuchi, S. Kadjiwara, and N. Shinya, Improved shape memory properties and internal structures in Fe-Mn-Si-based alloys containing Nb and C, J. Phys. IV. 112 (2003) 373-376.

DOI: 10.1051/jp4:2003904

Google Scholar

[7] V.V. Sagaradze, E.V. Belozerov, M.L. Mukhin, Yu.R. Zainutdinov, N.L. Pecherkina, and V.A. Zavalishin, A new approach to creation of high-strength austenitic steels with a controlled shape memory effect, Phys. Met. Metallogr. 101 (2006) 506-512.

DOI: 10.1134/s0031918x06050127

Google Scholar

[8] V.V. Sagaradze, A.I. Uvarov, Strengthening and properties of austenitic steels, Ural branch RAS, Ekaterinburg, (2013).

Google Scholar

[9] Z.Z. Dong, S. Kajiwara, T. Kikuchi, and T. Sawaguchi, Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe-15Mn-9Cr-5Ni-(0. 5-l . 0) NbC alloys, Acta Mater. 53 (2005) 4009- 4018.

DOI: 10.1016/j.actamat.2005.04.035

Google Scholar

[10] Yu.N. Koval', V.V. Kokorin, Tetragonality of carbon-free martensite, Phys. Met. Metallogr. 39 (1975) 129-133.

Google Scholar

[11] Yu.I. Chumlyakov, I.V. Kireeva, E. Yu. Panchenko, et al., Shape memory effects in FeNiCoTi single crystals undergoing g —a' thermoelastic martensitic transformations, Dokl. Akad. Nauk. 394 (2004) 54-57.

DOI: 10.1134/1.1648092

Google Scholar

[12] J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Shape memory behavior and tension-compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy, Acta Materialia. 60 (2012) 2186-2195.

DOI: 10.1016/j.actamat.2011.12.047

Google Scholar

[13] V.V. Sagaradze, I.I. Kositsyna, M.L. Mukhin, Ye.V. Belozerov, Yu.R. Zainutdinov, High-strength precipitation-hardening austenitic Fe-Mn-V-Mo-C steels with shape memory effect, Mater. Sci. Eng. A. 481-482 (2008) 747-751.

DOI: 10.1016/j.msea.2007.02.158

Google Scholar

[14] V.V. Sagaradze, Ye.V. Belozerov, N.L. Pecherkina, et al., The shape memory effect in high-strength precipitation-hardening austenitic steels, Mater. Sci. Eng.A. 438-440 (2006) 812-815.

DOI: 10.1016/j.msea.2006.01.113

Google Scholar

[15] V.V. Sagaradze, M.L. Mukhin, E.V. Belozerov, et al., Controlled shape memory effect in high strength Mn and Cr-Mn steels, Mater. Sci. Eng. A. 481-482 (2008) 742-746.

DOI: 10.1016/j.msea.2007.02.155

Google Scholar

[16] V.V. Sagaradze, V.I. Voronin, Yu.I. Filippov, V.A. Kazantsev, M.L. Mukhin, E.V. Belozerov, N.L. Pecherkina, N.V. Kataeva, and A.G. Popov, Martensitic transformations γ - ε (α) and the shape memory effect in aging high-strength manganese austenitic steels, Phys. Met. Metallogr. 106 (2008).

DOI: 10.1134/s0031918x08120120

Google Scholar

[17] J.S.T. Van Aswegen and R.W.K. Honeycombe, Segregation and precipitation in stacking faults, Acta Met. 10 (1962) 262-264.

DOI: 10.1016/0001-6160(62)90129-3

Google Scholar

[18] V.G. Gavriljuk, V.V. Bliznuk, V.D. Shanina, and S.P. Kolesnik, Effect of silicon on atomic distribution and shape memory in Fe-Mn base alloys, Mater. Sci. Eng., A. 406 (2005) 1-10.

DOI: 10.1016/j.msea.2005.05.043

Google Scholar

[19] I.I. Kositsyna, V.V. Sagaradze, O.N. Khakimova, Specific features of precipitation hardening of austenitic steels with different matrixes: II. Kinetics and mechanism of carbide precipitation, Phys. Met. Metallogr. 84 (1997) 87-94.

Google Scholar

[20] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, and V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966-(1968).

DOI: 10.1063/1.117637

Google Scholar

[21] A.G. Popov, E.V. Belozerov, V.V. Sagaradze, N.L. Pecherkina, I.G. Kabanova, V.S. Gaviko, and V. I. Khrabrov, Martensitic transformations and magnetic-field-induced strains in Ni50Mn50-xGa alloys, Phys. Met. Metallogr. 102 (2006) 140-148.

DOI: 10.1134/s0031918x06080047

Google Scholar

[22] R.A. Vandermeer, Phase transformations in uranium + 14 at. % niobium alloy, Acta Metal. 28 (1980) 383-393.

DOI: 10.1016/0001-6160(80)90173-x

Google Scholar

[23] R.A. Vandermeer, J.C. Ogle, and W.G. Northcutt, A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys, Metall. Trans. A, 12 (1981) 733-741.

DOI: 10.1007/bf02648337

Google Scholar

[24] M.R. Nemirovskii, Yu.R. Nemirovskii, and A.A. Rudakov, Phase and structure variations during the strain-induced gamma-epsilon transformation in 30Kh12G23, Phys. Met. Metallogr. 50 (1980) 153-159.

Google Scholar

[25] V.V. Sagaradze, S.V. Afanas'ev, N.V. Kataeva, Shape memory effect in Mn-V-C austenitic steels involving deformation reorientation of ε-martensite, Phys. Met. Metallogr. 114 (2013) 322-326.

DOI: 10.1134/s0031918x13020117

Google Scholar

[26] A. Sato and T. Mori, Shape Memory Alloy of Fe-Mn-Si, in: Proc. Int. Symp. on Shape Memory Alloys, China Academic, Beijing, 1986, 353-358.

Google Scholar