TiNi Shape Memory Foams, Produced by Self-Propagating High-Temperature Synthesis

Article Preview

Abstract:

This chapter is devoted to a study of structure, martensitic transformation and shape memory behaviour in TiNi foams produced by self-propagating high-temperature synthesis. The influence of the chemical composition of the Ti+Ni powder mixture as well as pre-heating temperature on the structure and properties of TiNi foams is studied. It is shown that the variation in Ni concentration in the powders mixture allows one to produce a porous TiNi alloy with properties close to the equiatomic cast Ti50Ni50 alloy or Ni-rich cast TiNi alloy. It is shown that the TiNi foams produced from a mixture where the Ni concentration is higher than 45 at.% should be subjected to post-production annealing to decrease the Ni concentration in the TiNi phase. The influence of annealing temperature and duration on the structure and martensitic transformation in TiNi foams produced by SHS is studied. The optimal conditions for annealing of the TiNi foams are found. It is shown that TiNi foams after optimal heat treatment demonstrate good shape memory properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

499-531

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.F. Ashby et. al. Metal Foams: a design guide Elsivier, (2000).

Google Scholar

[2] A. Kennedy Porous Metals and metal foams made from powders, in Powder metallurgy ed. Katsuyoshi Kondoh doi: 10/5772/33060.

DOI: 10.5772/33060

Google Scholar

[3] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni based shape memory alloys, Prog. Mater. Sci. 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[4] V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, Shape memory alloys: Fundamental, Modeling and Applications, Ecole de Technologie Superieure, Quebec, (2003).

Google Scholar

[5] A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Porous NiTi for bone implants: a review, Acta Biomater. 4 (2008) 773 – 782.

DOI: 10.1016/j.actbio.2008.02.009

Google Scholar

[6] J.S. Kim, J.H. Kang, S.B. Kang, K.S. Yoon, Y.S. Kwon, Porous TiNi biomaterials by self-propagating high-temperature synthesis, Advanced engineering materials 6 (2004) 403 – 406.

DOI: 10.1002/adem.200405151

Google Scholar

[7] C.Y. Chung, C.L. Chu, S.D. Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis, Materials Letters 58 (2004) 1683 – 1686.

DOI: 10.1016/j.matlet.2003.10.045

Google Scholar

[8] C.L. Chu, J.C. Chung, P.K. Chu, Effect of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique, Trans Nonferrous Met. Soc. China 16 (2006) 49 – 53.

DOI: 10.1016/s1003-6326(06)60009-5

Google Scholar

[9] C.L. Chu, C.Y. Chung, P.H. Lin, DSC study of the effect of aging temperature on the reverse martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis, Mater. Letters 59 (2005) 404 – 407.

DOI: 10.1016/j.matlet.2004.08.036

Google Scholar

[10] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, Synthesis of porous Ni-Ti shape memory alloys by self-propagating high-temperature synthesis: Reaction mechanism amd anisotropy in pore structure, Acta Mater. 48 (2000) 3895 – 3904.

DOI: 10.1016/s1359-6454(00)00184-1

Google Scholar

[11] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, An investigation of the synthesis of Ti-50 at. pct. Ni alloys through combustion synthesis and conventional powder sintering, Metal. Mater. Trans. A 31 (2000) 1867 – 1871.

DOI: 10.1007/s11661-006-0242-4

Google Scholar

[12] C.L. Yen, W.Y. Sung, Synthesis of NiTi intermatellics by self-propagating combustion, J. Alloy and Comp. 376 (2004) 79 – 88.

Google Scholar

[13] G. Tosun, L. Ozler, M. Kaya, N. Orhan, A study on microstructure and porosity of NiTi alloy implants produced by SHS, J. Alloy and Comp. doi: 10. 1016/j. jallcom. 2009. 08. 023.

DOI: 10.1016/j.jallcom.2009.08.023

Google Scholar

[14] V.É. Gyunter, V.N. Khodorenko, A.N. Monogenov, Yu.F. Yasenchuk, Effect of deformation on the permeability of porous titanium-nickel alloys, Tech. Phys. Lett. 26 (2000) 320-322.

DOI: 10.1134/1.1262830

Google Scholar

[15] V.E. Gyunter, Yu.F. Yasenchuk, A.A. Klopotov, V.N. Khodorenko, The physicomechanical properties and structure of superelastic porous titanium nickelide-based alloys, Tech. Phys. Lett. 26 (2000) 35.

DOI: 10.1134/1.1262732

Google Scholar

[16] M. Kaya, N. Orhan, G. Tosun, The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material, Current opinion in solid state and materials science doi: 10. 1016/j. cossms. 2009. 07. 002.

DOI: 10.1016/j.cossms.2009.07.002

Google Scholar

[17] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, A recent development in producing porous Ni-Ti shape memory alloys, Intermetal. 8 (2000) 881 – 884.

DOI: 10.1016/s0966-9795(00)00024-8

Google Scholar

[18] V.N. Khodorenko, V.É. Gyunter, A.N. Monogenov, Yu.F. Yasenchuk, Exothermal and endothermal effects in porous titanium-nickel alloys, Technical Physics Letters 27 (2001) 970-972.

DOI: 10.1134/1.1424409

Google Scholar

[19] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, Electrical resistance phenomena in porous Ni-Ti shape memory alloys produced by SHS, Scripta Mater. 44 (2001) 823 -827.

DOI: 10.1016/s1359-6462(00)00653-9

Google Scholar

[20] H.C. Jiang, L.J. Rong, Ways to lower transformation temperatures of porous NiTi shape memory alloy fabricated by self-propagating high-temperature synthesis, Mater. Sci. Eng. A 438-440 (2006) 883 – 886.

DOI: 10.1016/j.msea.2006.01.103

Google Scholar

[21] S. Wisutmethangoon, N. Denmud, L. Sikong, Characteristics and compressive properties of porous NiTi alloy synthesiz ed by SHS technique, Mater. Sci. Eng. A 515 (2009) 93 – 97.

DOI: 10.1016/j.msea.2009.02.055

Google Scholar

[22] Z. Guo, H. Xie, F. Dai, H. Qiang, L. Rong, P. Chen, F. Huang, Compressive behavior of 64 % porosity NiTi alloy: An experimental study, Mater. Sci. Eng. A 515 (2009) 117 – 130.

DOI: 10.1016/j.msea.2009.03.083

Google Scholar

[23] V.N. Khodorenko, V.É. Gyunter, Investigations of the structure of porous titanium nickelide after thermal treatment, Russian Physics Journal 51 (2008) 1090-1096.

DOI: 10.1007/s11182-009-9146-2

Google Scholar

[24] M. Kaya, N. Orhan, B. Kurt, T. Khan, The effect of solution treatment under loading on the microstructure and phase transformation behavior of porous NiTi shape memory alloy fabricated by SHS, J. Alloy and Comp., doi: 10. 1016/j. jallcom. 2008. 07. 023.

DOI: 10.1016/j.jallcom.2008.07.023

Google Scholar

[25] B. Yuan, X. P. Zhang, C.Y. Chung and M. Zhu. The effect of porosity on phase transformation behavior of porous Ti-50. 8at. %Ni shape memory alloys prepared by capsule–free hot isostatic pressing, Mater. Sci. Eng. A 438-440 (2006) 585-588.

DOI: 10.1016/j.msea.2006.02.141

Google Scholar

[26] S.L. Wu, X.M. Liu, P. Chu, T. Hu, K.W.K. Yeung, C.Y. Chung, Fabrication and surface modification of porous nickel-titanium shape memory alloy for bone graft, In Chen, ER (Ed. ), Shape memory alloys: manufacture, properties and applications, Nova Science Publishers, New York, 2010, pp.69-111.

Google Scholar

[27] B. Yuan, X. P. Zhang, M. Zhu, M. Q. Zeng,C. Y. Chung, A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes, Metal. Mater. Trans. A 37 (2006) 755-761.

DOI: 10.1007/s11661-006-0047-5

Google Scholar

[28] B. Kockar, H. Ozcan, S. Cakmak, Shape memory behavior of Ni-rich NiTi foam with different porosity percentages, Journal of intelligent material systems and structures 24 (2013) 1131-1137.

DOI: 10.1177/1045389x12469450

Google Scholar

[29] L.W. Ma, C.Y. Chung, Y.X. Tong, Y.F. Zheng, Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing, Journal of Materials Engineering and Performance 20 (2011) 783-786.

DOI: 10.1007/s11665-011-9913-4

Google Scholar

[30] V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, M. Filonov, Bulk and porous metastable beta Ti-Nb-Zr(Ta) alloys for biomedical applications, Mater. Sci. Eng. C 31(2011) 643-657.

DOI: 10.1016/j.msec.2010.12.008

Google Scholar

[31] S. Gong, Z. Li, G.Y. Xu, N. Liu, Y.Y. Zhao, S.Q. Liang, Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering–evaporation process, J. Alloys Comp. 509 (2011) 2924–2928.

DOI: 10.1016/j.jallcom.2010.11.157

Google Scholar

[32] E. M. Castrodeza,C. Mapelli, M. Vedani, S. Arnaboldi, P. Bassani, A Tuissi, Processing of Shape Memory CuZnAl Open-cell Foam by Molten Metal Infiltration, Journal of Materials Engineering and Performance 18 (2009) 484-489.

DOI: 10.1007/s11665-009-9398-6

Google Scholar

[33] S. Arnaboldi, P. Bassani, F. Passaretti, A. Redaelli, A. Tuissi, Functional Characterization of Shape Memory CuZnAl Open-Cell Foams by Molten Metal Infiltration, Journal of Materials Engineering and Performance 20 (2011) 544 – 550.

DOI: 10.1007/s11665-011-9878-3

Google Scholar

[34] A. Tuissi, P. Bassani, C.A. Biffi, CuZnAl Shape Memory Alloys Foams, Advances in Science and Technology 78, 31-39.

DOI: 10.4028/www.scientific.net/ast.78.31

Google Scholar

[35] C.E. Wen, J.Y. Xiong, Y.C. Li, P.D. Hodgson, Porous shape memory alloy scaffolds for biomedical applications: a review, Physica Scripta T139 (2010) doi: 10. 1088/0031-8949/2010/T139/014070.

DOI: 10.1088/0031-8949/2010/t139/014070

Google Scholar

[36] Yu.S. Naiborodenko, V.I. Itin, V.P. Ushakov, et al., USSR Inventorśs Certificate No. 420394, MKI B 22 f1/00, 14 (1974).

Google Scholar

[37] V.I. Itin, V.N. Khachin, A.D. Bratchikov, V.E. Gyunter, E.F. Dudarev, T.V. Monasevich, D.B. Chernov, G.D. Timonin, A.P. Paperskii, Structure and properties of titanium nickelide materials made by self-propagating high-temperature synthesis, Soviet Physics Journal 20 (1977).

DOI: 10.1007/bf00897439

Google Scholar

[38] A.D. Bratchikov, A.G. Merzhanov, V.I. Itin, V.N. Khachin, E.F. Dudarev, V.E. Gyunter, V.M. Maslov, D.B. Chernov, Self-propagating high-temperature synthesis of titanium nickelide, Soviet powder metallurgy and metal ceramics 19 (1980) 5-8.

DOI: 10.1007/bf00798152

Google Scholar

[39] V.I. Itin, V.N. Khachin, V.E. Gyunter, A.D. Bratchikov, D.B. Chernov, Production of titanium nickelide by self-propagating high-temperature synthesis, Soviet powder metallurgy and metal ceramics 22 (1983) 156-157.

DOI: 10.1007/bf00793904

Google Scholar

[40] V.I. Itin, V.E. Gyunter, S.A. Shabalovskaya, R.L. Sachdeva, Mechanical properties and shape memory of porous nitinol, Materials Characterization 32 (1994) 179-187.

DOI: 10.1016/1044-5803(94)90087-6

Google Scholar

[41] B. -Y. Li, L. -J. Rong, V.E. Gjunter, Y. -Y. Li, , Porous Ni-Ti shape memory alloys produced by two different methods, Materials Research and Advanced Techniques 91 (2000) 291-295.

Google Scholar

[42] Yu.F. Yasenchuk, V.É. Gjunter, Surface structure of porous titanium nickelide produced by SHS, Russian Physics Journal 51 (2008) 851-857.

DOI: 10.1007/s11182-009-9111-0

Google Scholar

[43] H. Q. Che, Y. Ma, Q. Ch. Fan, Investigation of the mechanism of self-propagating high-temperature synthesis of TiNi, J Mater Sci 46 (2011) 2437–2444.

DOI: 10.1007/s10853-010-5090-3

Google Scholar

[44] N. Resnina, S. Belyaev, A. Voronkov, A. Krivosheev, I. Ostapov, Peculiarities of mechanical behaviour of porous TiNi alloy, prepared by self-propagating high-temperature synthesis, Mater. Sci. Eng. A 527 (2010) 6364-6367.

DOI: 10.1016/j.msea.2010.06.054

Google Scholar

[45] N. Resnina, S. Belyaev, A. Voronkov, V. Mozgunov, A. Krivosheev, I. Ostapov, Martensitic transformation and mechanical behavior of porous Ti-50. 0 at % Ni alloy, fabricated by self-propagating high temperature synthesis at different temperature, Physics Procedia 10 (2010).

DOI: 10.1016/j.phpro.2010.11.067

Google Scholar

[46] N. Resnina, S. Belyaev, Multi-stage martensitic transformations induced by repeated thermal cycling of equiatomic TiNi alloy, J. Alloys Compd. 486 (2009) 304.

DOI: 10.1016/j.jallcom.2009.06.132

Google Scholar

[47] J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F. -X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater. 58 (2010) 3444-3458.

DOI: 10.1016/j.actamat.2010.02.019

Google Scholar

[48] J. Khalil-Allafi, A. Dlouhy, and G. Eggeler. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 50 (2002) 4255-4274.

DOI: 10.1016/s1359-6454(02)00257-4

Google Scholar

[49] N. Resnina, S. Belayev, A. Voronkov, Influence of chemical composition and pre-heating temperature on the structure and martensitic transformation in porous TiNi-based shape memory alloys, produced by self-propagating high-temperature synthesis, Intermetal. 32 (2013).

DOI: 10.1016/j.intermet.2012.08.009

Google Scholar

[50] K.N. Melton, O. Mercier, The mechanical properties of NiTi-based shape memory alloys, Acta Mater. 29 (1981) 393–398.

DOI: 10.1016/0001-6160(81)90165-6

Google Scholar

[51] Y. Liu, S.P. Galvin, Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys, Acta Mater. 45 (1997) 4431-4439.

DOI: 10.1016/s1359-6454(97)00144-4

Google Scholar