[1]
J. Perkins (Ed. ), Plenum press, New York-London, (1975).
Google Scholar
[2]
V.A. Zaymovskiy (Ed. ), Shape memory Effects in Alloys, Metallurgy, Moscow, 1979. [in Russian].
Google Scholar
[3]
S.A. Muslov, V.A. Andreev, A.B. Bondarev, P.Y. Sukhochev, Superelastic alloys with shape memory effect in science, technology and medicine, Folium, Moscow, 2010. [in Russian].
Google Scholar
[4]
V.A. Likhachev (Ed. ), Materials with shape memory effect, Reference book in 4 volumes, St. Petersburg, 1997. [in Russian].
Google Scholar
[5]
V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, (Eds. ), Shape memory alloys: fundamentals, modeling and applications, ETS Publ., Canada, (2003).
Google Scholar
[6]
T.W. Durig, K.N. Melton, D. Stokel, C.M. Wayman, Engineering aspects of shape memory alloys, Butterworth-Heinemann, Great Britain, (1990).
Google Scholar
[7]
H. Funakubo, Shape memory alloys, Gordon and Breach Science Publishers, New York, (1986).
Google Scholar
[8]
V. Brailovski, F. Trochu, Review of shape memory alloys medical applications in Russia, Bio-Medical of materials & Engineering. 4 (1996) 291-298.
DOI: 10.3233/bme-1996-6406
Google Scholar
[9]
A.I. Razov Application of Titanium Nickelide–Based Alloys in Engineering, The Physics of Metals and Metallography. 97 (2004) 97-126.
Google Scholar
[10]
A.I. Razov, SMA applications and design principles in V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu (Eds. ) Shape memory alloys: fundamentals, modeling and applications , ETS Publ., Canada, 2003, pp.685-729.
Google Scholar
[11]
K. Otsuka, C.M. Wayman (Eds. ), Shape memory materials., Cambridge University Press, (1999).
Google Scholar
[12]
V.G. Pushin, Alloys with a thermomechanical memory: structure, properties and application. Phys. of Met. And Metallography 90 (2000) 68-95.
Google Scholar
[13]
T. Yoneyama, S. Miyazaki, (Eds. ) Shape Memory Alloys for Biomedical Applications, Woodhead Publ., Cambridge, (2009).
Google Scholar
[14]
J. M. Jani, M. Leary, A. Subic, M. Gibson, A review of shape memory research, applications and opportunities, Materials and Design. 56 (2014) 1078-1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[15]
S.D. Prokoshkin, М.N. Belousov, V. Ya Аbramov, et. al. Creation of submicrostructure and improving of functional properties Ti-Ni-Fe shape memory alloys by ECAP method, Metal Science and Heat Treatment. 2 (2007) 8-13. [in Russian].
Google Scholar
[16]
М.N. Belousov, A.V. Korotitskiy, S.D. Prokoshkin, et. al Characteristics of recovery strain and recovery stress of TiNi47Fe3 alloy after thermomechanical treatment and severely plastic deformation, Deformation and fracture of materials. 11 (2006).
Google Scholar
[17]
V. Ya. Abramov, N.M. Aleksandrova, D.V. Borovkov, S.Y. Makushev, N.A. Polyakova, N.N. Popov, S.D. Prokoshkin, I. YU. Khmelevskaya, Structure and functional properties of thermally and thermomechanically treated Ti-Ni-Nb based alloys with wide martensitic hysteresis, I. Ternary Ti-Ni-Nb alloys, Phys. Met. Metallogr. 4 (2006).
DOI: 10.1134/s0031918x06050115
Google Scholar
[18]
V. Ya. Abramov, N.M. Aleksandrova, D.V. Borovkov, S.Y. Makushev, N.A. Polyakova, N.N. Popov, S.D. Prokoshkin, I.Y. Khmelevskaya, Structure and functional properties of thermally and thermomechanically treated Ti-Ni-Nb based alloys with wide martensitic hysteresis. II. Ti-Ni-Nb alloys alloyed with zirconium, Phys. Met. Metallogr. 5 (2006).
DOI: 10.1134/s0031918x06050115
Google Scholar
[19]
V. Ya. Abramov, N.M. Aleksandrova, D.V. Borovkov, I.Y. Khmelevskaya, A.V. Korotitskiy, S.Y. Makushev, N.A. Polyakova, N.N. Popov, S.D. Prokoshkin, Martensitic transformations and functional properties of thermally and thermomechanically treated Ti-Ni-Nb-based alloys, Materials Science and Engineering. A 438-440 (2006).
DOI: 10.1016/j.msea.2006.05.170
Google Scholar
[20]
Information on: http: / www. armgas. ru.
Google Scholar
[21]
N.T. Romanenko, RU Patent 2, 289, 747. (2006).
Google Scholar
[22]
T.S. Romanenko, RU Patent 2, 315, 222 (2006).
Google Scholar
[23]
I. Yu. Khmelevskaya, S.D. Prokoshkin, S. Yu. Makushev, A.B. Bondarev, V.A. Andreev, Structure and shape recovery characteristics of Ti-50. 0%Ni thermomechanically treated industrial wire. Proc. ESOMAT 2009, Prague, EDP sciences, 2009, DOI: 10. 1051/esomat/200905015.
DOI: 10.1051/esomat/200905015
Google Scholar
[24]
K.A. Vachiyan, Proc. of 68 days of Science NUST MISIS,. (2013) 549.
Google Scholar
[25]
M.D. Klimovitskiy, S.D. Prokoshkin, I. Yu. Khmelevskaya, Protection of heating (water) systems from freezing by using the Ti-Ni transformation plasticity, Proc. of XXXVIII Seminar Actual Problem of Strength, St. -Petersburg, 2, 2001, pp.485-488.
Google Scholar
[26]
V.E. Gunther V.N., Hodorenko, Y.F. Yasenchuk, T.L. Chekalkin et. al., Titanium nickelide. Medical Supplies of the new generation, MIC Publishing House, Tomsk, 2006. [in Russian].
Google Scholar
[27]
V.E. Gunther, V.N. Hodorenko, T.L. Chekalkin, V.N. Olesov, et. al., Medical materials and implants with shape memory, MIC Publishing House, Tomsk, 2011. [in Russian].
Google Scholar
[28]
V.E. Gunther, G. Ts. Dambaev, P.G. Sysoliatin et al., Delay Law and New Class of Materials and Implants in Medicine, Northampton, MA: STT, (2000).
Google Scholar
[29]
Information on: http: / www. sme-implant. com.
Google Scholar
[30]
V. E Gunther (Ed. ), Shape Memory Materials and Implants in medicine, NPP Medical Engineering Center, Tomsk, 2014. [in Russian].
Google Scholar
[31]
D.D. Miller, V.E., Gunter, G. Ts. Dambaev., Chugui E.V., et. al., A porous-permeable krioapplikators of NiTi in medicine., Univ. MIC, Tomsk, 2010. [in Russian].
Google Scholar
[32]
V.E. Gunter (Ed. ), Shape memory materials and new technologies in medicine, NPP Medical Engineering Center, Tomsk, 2007 [in Russian].
Google Scholar
[33]
S.D. Prokoshkin, I. Yu Khmelevskaya, E.P. Ryklina, A twenty years experience of Moscow State Institute of Steel and Alloys in TiNi medical applications, Proc. Int. Conf. SMST-2004, ASM Int., Materials Park, Ohio, 2006, pp.573-577.
Google Scholar
[34]
M. Soutorine, A. Chernov-Haraev, S. Prokoshkin, I. Khmelevskaya, E. Ryklina, A. Korotitskiy, R. Ipatkin, PCT/AU, 2011/001586. (2011).
Google Scholar
[35]
I. Kh. Rabkin, V.A. Zaimovsky, I. Yu. Khmelevskaya, Experimental substantiation and the first clinical experience of X-ray endovascular stenting, Vestnik rentgenologii i radiologii. 4 (1984) 59-64. [in Russian].
Google Scholar
[36]
E.P. Ryklina, I.V. Maksimovitch, The first experience of clinical application of aorta stenting with Nitinol shape memory stent, Proc. Seminar Actual problems of strength, Pskov, 1993, pp.145-147 [in Russian].
Google Scholar
[37]
I. Yu. Khmelevskaya, E.P. Ryklina, T.V. Morozova, S.D. Prokoshkin, I. Kh. Rabkin, Application of Ti-Ni SME Alloys to X-ray Endostenting and Other Medical Fields, Proc. Int. Conf. SMST-94, California, USA, 1994, pp.495-498.
Google Scholar
[38]
K.V. Lapkin, I. Kh. Rabkin, S.P. Nelubin, V.I. Malyartchuk, The First Experience of Inter-Operational X-Ray Endobiliar Stenting of Tumor Strictures of Inter-Liver Bile Ducts, New Technologies in X-ray surgery, Abstracts of All-Union Symp., Moscow, 1989, pp.31-32.
Google Scholar
[39]
I. Kh. Rabkin, A.S. Mamontov, S.A. Prozorov, G.I. Mednik, The First Experience of the Clinical Use of X-Ray Endoesophageal Stenting, the same, pp.39-40. [in Russian].
Google Scholar
[40]
Rabkin, I. Kh., Novikiva, E.G., Pronin, A.G., Prozorov, S.A., Nitinol Stent Implantation in Treatment of Strictures and Atresiases of Cervical Canal Uterus, Medicinskaya Radiologiya, 3 (1991) 35-38. [in Russian].
Google Scholar
[41]
Patrik W Serruys (Ed. ), Handbook of Coronary Stents, Rotterdam, Mosby, (1997).
Google Scholar
[42]
S.D. Prokoshkin, Khmelevskaya, I. Yu., Ryklina, E.P., Chadaev, A.P. A.C. Butckevitch, P.A. Sytchev, Correction of a Function of Main Vein Valves Using Extravascular Nitinol Shape Memory Corrector, Int. Symp. on Advanced Biomaterials (ISAB), Montreal, Canada, 1997, p.27.
DOI: 10.1007/978-3-642-59768-8_20
Google Scholar
[43]
H. Yahia (Ed. ), Shape memory Implants, Springer, Berlin, (2000).
Google Scholar
[44]
E.P. Ryklina, S.D. Prokoshkin, I. Yu. Khmelevskaya, Medical Applications, in: V. Brailovski, S. Prokoshkin, P. Terriault, F. Troshu (Eds. ), Shape Memory Alloys: Fundamentals, Modeling and Applications, ETS Publ., Montreal, 2003, pp.755-806.
Google Scholar
[45]
V.I. Savinikh, A combined sclerotic reconstruction of a highly myopic eye, Oftalm. Zhurn. 8 (1980) 480-483. [in Russian].
Google Scholar
[46]
I. Yu. Khmelevskaya, E.P. Ryklina, S.D. Prokoshkin, G.A. Markossian, E.P. Tarutta, E.N. Iomdina, A shape memory device for the treatment of high myopia, Mater. Sci. Eng. A 481-482 (2008) 651-653.
DOI: 10.1016/j.msea.2007.02.171
Google Scholar
[47]
S.D. Prokoshkin, E.P. Ryklina, I. Yu. Khmelevskaya, E.P. Tarutta, G.A. Markossian, Russian Patent 2, 231, 339 (2004).
Google Scholar
[48]
M. Souturine, M. Grigg, New technology of Abdominal Aortic Aneurism graft fixation using endoluminal stapler (experimental study), Radiology – diagnostics and intervention. 2 (2010) 21-23.
Google Scholar
[49]
M. Soutorine, A. Chernov-Haraev, PCT/AU2008/000623. (2008).
Google Scholar
[50]
S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Demers, E.V. Tatyanin, Formation of nanocrystalline structure under severe plastic deformation by rolling and annealing and increase of a complex of functional properties of Ti-Ni alloys, Communications of the Russian Academy of Sciences. Physical Series. 9 (2006).
Google Scholar
[51]
Method of thermomechanical treatment of staples for blood vessels suturing produced from titanium-nikel alloy with high superelastic recovery force and shape recovery rate. Registered in Depozitarium of Know-How, NUST «MISIS» № 15-017-2010 OIS 30th March, 2010. [in Russian].
Google Scholar
[52]
I. Khmelevskaya, M. Soutorine, S. Prokoskin, E. Ryklina, Creation of superelastic functional properties in a Ti-50. 7%Ni wire for the stapler suturing of blood vessels, Advances in Science and Technology 76 (2010) 253-258.
DOI: 10.4028/www.scientific.net/ast.76.253
Google Scholar
[53]
M. Soutorine, A. Chernov-Haraev, S. Prokoshkin, I. Khmelevskaya, E. Ryklina, A. Korotitskiy, PCT/AU, 2011/0015611. (2011).
Google Scholar
[54]
S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina and I. Yu. Khmelevskaya. Application of titanium nickelide based alloys in medicine. Phys. Met. Metallogr. 97 (2004) S56-S97.
Google Scholar
[55]
E.P. Ryklina, S.D. Prokoshkin, A.A. Chernavina, N.N. Perevoshikova. Stady of thermomechanically induced SME and TWSME parameters in Ti-Ni alloy, Journal of Functional materials. 481-482 (2008) 114-118. [in Russian].
Google Scholar
[56]
S.V. Oleynikova, S.D. Prokoshkin, L.M. Kaputkina, et. al. Effect of aging on the mechanical behavior of the alloy Ti-50. 7% Ni, Technology of light alloys. 4 (1990) 28-34. [in Russian].
Google Scholar