[1]
D.E. Hodgson, M.H. Wu, and R.J. Biermann, Shape Memory Alloys, in: ASM Handbook, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Material Park, Ohio, 1990, pp.897-902.
DOI: 10.31399/asm.hb.v02.a0001100
Google Scholar
[2]
M.H. Wu, and L.M. Schetky, Industrial applications for shape memory alloys , in: International conference on shape memory and superelastic technologies. Pacific Grove, California, USA, (2000) 171-182.
Google Scholar
[3]
J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Materials & Design, 56 (2013) 1078-1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[4]
F. Blaha, B. Langenecker, Dehnung von Zink-Kristallen unter Ultraschalleinwirkung, Naturwissenschaften, 42 (1955) 556.
DOI: 10.1007/bf00623773
Google Scholar
[5]
F. Blaha, B. Langenecker, D. Oelschlagel, Zum plastischen Verhalten von Metallen unter Schalleiwirkung, Zs. Metallkunde, 51 (1960) 636-638.
DOI: 10.1515/ijmr-1960-511105
Google Scholar
[6]
B. Langenecker, Crystals Plasticity in Macrosonic Fields, Bul. Am. Phys. Soc., 8 (1963) 288.
Google Scholar
[7]
A.T. Robinson, J.C. Connelly, and L.H. Stayton, The Application of Ultrasonics in Wire Drawing, Wire and Wire Products, 39 (1964) 1925-(1931).
Google Scholar
[8]
V.P. Severdenko, V.V. Klubovich, and A.V. Stepanenko, Ultrasonic rolling and drawing of metals, Translated from Russian by Emerson H. Virden, Jr. Trans. editor: J. S. Wood, New York, Consultants Bureau, (1972).
DOI: 10.1007/978-1-4899-4800-7
Google Scholar
[9]
A.B. Lebedev, Application of internal friction to analysis of plastic behaviour of crystals, J. de Physique IV, suppl. J. de Physique III, 6 (1996) 255-264.
DOI: 10.1051/jp4:1996855
Google Scholar
[10]
V.S. Postnikov, Internal friction in metals, Izd. Metallurgy, Moscow, 1969 [in Russian].
Google Scholar
[11]
O.V. Abramov, High-intensity ultrasonics: theory and industrial applications, Gordon and Breach Science Publishers, Amsterdam, (1999).
Google Scholar
[12]
S.A. Kirillov, V.V. Klubovich, and A.V. Kozlov, Effect of ultrasonic vibrations on the plastic properties of shape memory materials, in International conference «Shape memory materials», S. -Petersburg (1995) 81-84 [in Russian].
DOI: 10.4028/www.scientific.net/msfo.81-82.406
Google Scholar
[13]
K. Otsuka, K. Shimizu, Yu. Sudzuki, Y. Sekiguchi, C. Tadaki, T. Honma, S. Miyazaki, Shape Memory Alloys, Ed. by Funakubo, Kyoto, (1984).
Google Scholar
[14]
V.A. Likhachev, S.L. Kuzmin, and Z.P. Kamentseva, Shape Memory Effect, Leningrad State University, Leningrad, 1987 [in Russian].
Google Scholar
[15]
V.V. Klubovich, V.V. Rubanik, V.A. Lickachov, V.V. Rubanik Jr., and V.G. Dorodeiko, Generation of Shape memory effect in Ti-Ni alloy by means of ultrasound, Shape Memory and Superelastic Technologies: Proceedings II Intern. Conference, California, USA, Ed. by A. Pelton, (1997).
DOI: 10.4028/www.scientific.net/msf.738-739.362
Google Scholar
[16]
S. Kustov, S. Golyandin, К. Sapozhnikov, J. Van Humbeeck, and R. De Batist, Low-temperature anomalies in Young's modulus and internal friction of Cu-Al-Ni single crystals, Acta Mater., 46 (1998) 5117-5126.
DOI: 10.1016/s1359-6454(98)00168-2
Google Scholar
[17]
T.W. Duerig, A.R. Pelton, Ti-Ni shape memory alloys, in: G.W.R. Boyer and E.W. Collings (Eds. ), Material Properties Handbook: Titanium Alloys, American Society for Metals, Material Park, Ohio, 1994, pp.1035-1048.
Google Scholar
[18]
S.P. Belyaev, S.A. Egorov, V.A. Lickachov, and O.E. Olhovik, Shape memory effects in Ti-Ni under omnidirectional pressure, J. Tech. Phys., 66 (1996) 36-46 [in Russian].
Google Scholar
[19]
S.A. Egorov and I.N. Lobachev, Pseudoelasticity of the Ti-Ni alloy subjected to omnidirectional pressure, J. Tech. Phys., 45 (2000) 786-788 [in Russian].
DOI: 10.1134/1.1259722
Google Scholar
[20]
S.P. Belyaev, S.A. Egorov, S. Pulnev and A.E. Volkov, Transformation plasticity and shape memory effect in TiNi and Cu-based alloys under hydrostatic pressure, J. Phys. IV France 112 (2003) 1209-1210.
DOI: 10.1051/jp4:20031101
Google Scholar
[21]
A.V. Kulemin, Ultrasound and Diffusion in Metals, Izd. Metallurgy, Moscow, 1978 [in Russian].
Google Scholar
[22]
R.B. Mignogna, R.E. Green Jr., J.C. Duke Jr., E.G. Henneke II, and K.L. Reifsnider, Thermographic Investigation of High-power Ultrasonic Heating in Materials, Ultrasonic, 7 (1981) 159-163.
DOI: 10.1016/0041-624x(81)90095-0
Google Scholar
[23]
V.V. Klubovich, V.V. Rubanik, V.G. Dorodeiko, V.V. Rubanik Jr., and Y.V. Tsarenko, BY Patent 2413. (1998).
Google Scholar
[24]
V.V. Rubanik, V.V. Klubovich, and V.V. Rubanik Jr., The ultrasounds initiation of SME, 10 International conference on martensitic transformations ICOMAT'02: Book of abstracts, Helsinki university of technology. Espoo, Finland (2002) 241.
DOI: 10.1051/jp4:2003876
Google Scholar
[25]
V.V. Rubanik, V.V. Klubovich, and V.V. Rubanik Jr., The Ultrasounds Initiation of SME, J. de Phys., 112 (2003) 249-251.
DOI: 10.1051/jp4:2003876
Google Scholar
[26]
V.V. Rubanik, Jr., V.V. Rubanik, and V.V. Klubovich, The Influence of Ultrasound on Shape Memory Behavior, Materials Science and Eng., A 481-482 (2008) 620-622.
DOI: 10.1016/j.msea.2007.02.134
Google Scholar
[27]
M.A. Khusainov, and V.N. Belyakov, General mechanism of loop formation of hysteresis in incomplete interval of MTransformation, Shape Memory and Superelastic Technologies: Proceedings II Intern. Conference, California, USA, Ed. by A. Pelton, Asilomar, California, (1997).
Google Scholar
[28]
V. Rubanick, A. Razov, and V. Rubanick Jr., Thermographic investigations of reverse martensitic transformation in TiNi under the action of ultrasound, Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications: Proceedings of the Intern. Symposium, Quebec, Canada, Ed. F. Trochu, V. Brailovski and A. Galibois, (1999).
Google Scholar
[29]
O. Mercier, K.N. Meltom, and Y. Preville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metall, 27 (1979) 1467-1475.
DOI: 10.1016/0001-6160(79)90169-x
Google Scholar
[30]
S. Kustov, and J. Van Humbeeck, Damping properties of SMA, Advances in Shape Memory Materials, Materials Science Forum, 583 (2008) 85-109.
DOI: 10.4028/www.scientific.net/msf.583.85
Google Scholar
[31]
V.A. Lobodyuk, Yu. N. Koval', and V.G. Pushin, Crystal-structural features of pretransition phenomena and thermoelastic martensitic transformationsin alloys of nonferrous metals, Phys. Met. Metallogr., 111 (2011) 165-189.
DOI: 10.1134/s0031918x11010212
Google Scholar
[32]
V.V. Rubanik, V.V. Rubanik Jr., Y.V. Tsarenko, A.E. Volkov, and S.P. Belyaev, BY Patent 4065 (2001).
Google Scholar
[33]
Shape Memory Effects in alloys, Ed. J. Perkins. Plenum Press, London, (1975).
Google Scholar
[34]
V.N. Khachin, V.G. Pushin, and V.V. Kondrat'ev, Titanium Nickelide: Structure and Properties, Nauka, Moscow, 1992 [in Russian].
Google Scholar
[35]
V.G. Pushin, Alloys with a Thermomechanical Memory: Structure, Properties, and Application, Phys. Met. Metallogr., 90 (2000) 568-595.
Google Scholar
[36]
V.V. Rubanik, Jr., V.V. Klubovich, V.V. Rubanik, and A.V. Shadursky, Modeling of Ultrasonic Initiation of Shape Memory Effect, Materials Eng. and Performance, 20 (2011) 731-736.
DOI: 10.1007/s11665-011-9851-1
Google Scholar