Influence of Ultrasonic Vibrations on Shape Memory Effect

Article Preview

Abstract:

The results of studies on the influence of ultrasonic vibrations (UVs) on shape memory effect (SME) in NiTi alloys are presented. The appearance of shape memory effect is due to changes in the temperature and mechanical stress. They can operate simultaneously under the ultrasonic treatment. It has been found that the ultrasonic vibrations can initiate shape recovery processes in a material with shape memory effect. The reversion of the accumulated deformation occurs at the direct and reverse martensite transformations under the influence of ultrasonic vibrations. Since the process is accompanied by ultrasonic heating, small thermal mechanical hysteresis loops have been observed during the direct transformation. The deformation reversion can be explained by ultrasonic heating of the sample due to the dissipation of vibrations and the formation of austenite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

406-428

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Hodgson, M.H. Wu, and R.J. Biermann, Shape Memory Alloys, in: ASM Handbook, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Material Park, Ohio, 1990, pp.897-902.

DOI: 10.31399/asm.hb.v02.a0001100

Google Scholar

[2] M.H. Wu, and L.M. Schetky, Industrial applications for shape memory alloys , in: International conference on shape memory and superelastic technologies. Pacific Grove, California, USA, (2000) 171-182.

Google Scholar

[3] J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Materials & Design, 56 (2013) 1078-1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[4] F. Blaha, B. Langenecker, Dehnung von Zink-Kristallen unter Ultraschalleinwirkung, Naturwissenschaften, 42 (1955) 556.

DOI: 10.1007/bf00623773

Google Scholar

[5] F. Blaha, B. Langenecker, D. Oelschlagel, Zum plastischen Verhalten von Metallen unter Schalleiwirkung, Zs. Metallkunde, 51 (1960) 636-638.

DOI: 10.1515/ijmr-1960-511105

Google Scholar

[6] B. Langenecker, Crystals Plasticity in Macrosonic Fields, Bul. Am. Phys. Soc., 8 (1963) 288.

Google Scholar

[7] A.T. Robinson, J.C. Connelly, and L.H. Stayton, The Application of Ultrasonics in Wire Drawing, Wire and Wire Products, 39 (1964) 1925-(1931).

Google Scholar

[8] V.P. Severdenko, V.V. Klubovich, and A.V. Stepanenko, Ultrasonic rolling and drawing of metals, Translated from Russian by Emerson H. Virden, Jr. Trans. editor: J. S. Wood, New York, Consultants Bureau, (1972).

DOI: 10.1007/978-1-4899-4800-7

Google Scholar

[9] A.B. Lebedev, Application of internal friction to analysis of plastic behaviour of crystals, J. de Physique IV, suppl. J. de Physique III, 6 (1996) 255-264.

DOI: 10.1051/jp4:1996855

Google Scholar

[10] V.S. Postnikov, Internal friction in metals, Izd. Metallurgy, Moscow, 1969 [in Russian].

Google Scholar

[11] O.V. Abramov, High-intensity ultrasonics: theory and industrial applications, Gordon and Breach Science Publishers, Amsterdam, (1999).

Google Scholar

[12] S.A. Kirillov, V.V. Klubovich, and A.V. Kozlov, Effect of ultrasonic vibrations on the plastic properties of shape memory materials, in International conference «Shape memory materials», S. -Petersburg (1995) 81-84 [in Russian].

DOI: 10.4028/www.scientific.net/msfo.81-82.406

Google Scholar

[13] K. Otsuka, K. Shimizu, Yu. Sudzuki, Y. Sekiguchi, C. Tadaki, T. Honma, S. Miyazaki, Shape Memory Alloys, Ed. by Funakubo, Kyoto, (1984).

Google Scholar

[14] V.A. Likhachev, S.L. Kuzmin, and Z.P. Kamentseva, Shape Memory Effect, Leningrad State University, Leningrad, 1987 [in Russian].

Google Scholar

[15] V.V. Klubovich, V.V. Rubanik, V.A. Lickachov, V.V. Rubanik Jr., and V.G. Dorodeiko, Generation of Shape memory effect in Ti-Ni alloy by means of ultrasound, Shape Memory and Superelastic Technologies: Proceedings II Intern. Conference, California, USA, Ed. by A. Pelton, (1997).

DOI: 10.4028/www.scientific.net/msf.738-739.362

Google Scholar

[16] S. Kustov, S. Golyandin, К. Sapozhnikov, J. Van Humbeeck, and R. De Batist, Low-temperature anomalies in Young's modulus and internal friction of Cu-Al-Ni single crystals, Acta Mater., 46 (1998) 5117-5126.

DOI: 10.1016/s1359-6454(98)00168-2

Google Scholar

[17] T.W. Duerig, A.R. Pelton, Ti-Ni shape memory alloys, in: G.W.R. Boyer and E.W. Collings (Eds. ), Material Properties Handbook: Titanium Alloys, American Society for Metals, Material Park, Ohio, 1994, pp.1035-1048.

Google Scholar

[18] S.P. Belyaev, S.A. Egorov, V.A. Lickachov, and O.E. Olhovik, Shape memory effects in Ti-Ni under omnidirectional pressure, J. Tech. Phys., 66 (1996) 36-46 [in Russian].

Google Scholar

[19] S.A. Egorov and I.N. Lobachev, Pseudoelasticity of the Ti-Ni alloy subjected to omnidirectional pressure, J. Tech. Phys., 45 (2000) 786-788 [in Russian].

DOI: 10.1134/1.1259722

Google Scholar

[20] S.P. Belyaev, S.A. Egorov, S. Pulnev and A.E. Volkov, Transformation plasticity and shape memory effect in TiNi and Cu-based alloys under hydrostatic pressure, J. Phys. IV France 112 (2003) 1209-1210.

DOI: 10.1051/jp4:20031101

Google Scholar

[21] A.V. Kulemin, Ultrasound and Diffusion in Metals, Izd. Metallurgy, Moscow, 1978 [in Russian].

Google Scholar

[22] R.B. Mignogna, R.E. Green Jr., J.C. Duke Jr., E.G. Henneke II, and K.L. Reifsnider, Thermographic Investigation of High-power Ultrasonic Heating in Materials, Ultrasonic, 7 (1981) 159-163.

DOI: 10.1016/0041-624x(81)90095-0

Google Scholar

[23] V.V. Klubovich, V.V. Rubanik, V.G. Dorodeiko, V.V. Rubanik Jr., and Y.V. Tsarenko, BY Patent 2413. (1998).

Google Scholar

[24] V.V. Rubanik, V.V. Klubovich, and V.V. Rubanik Jr., The ultrasounds initiation of SME, 10 International conference on martensitic transformations ICOMAT'02: Book of abstracts, Helsinki university of technology. Espoo, Finland (2002) 241.

DOI: 10.1051/jp4:2003876

Google Scholar

[25] V.V. Rubanik, V.V. Klubovich, and V.V. Rubanik Jr., The Ultrasounds Initiation of SME, J. de Phys., 112 (2003) 249-251.

DOI: 10.1051/jp4:2003876

Google Scholar

[26] V.V. Rubanik, Jr., V.V. Rubanik, and V.V. Klubovich, The Influence of Ultrasound on Shape Memory Behavior, Materials Science and Eng., A 481-482 (2008) 620-622.

DOI: 10.1016/j.msea.2007.02.134

Google Scholar

[27] M.A. Khusainov, and V.N. Belyakov, General mechanism of loop formation of hysteresis in incomplete interval of MTransformation, Shape Memory and Superelastic Technologies: Proceedings II Intern. Conference, California, USA, Ed. by A. Pelton, Asilomar, California, (1997).

Google Scholar

[28] V. Rubanick, A. Razov, and V. Rubanick Jr., Thermographic investigations of reverse martensitic transformation in TiNi under the action of ultrasound, Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications: Proceedings of the Intern. Symposium, Quebec, Canada, Ed. F. Trochu, V. Brailovski and A. Galibois, (1999).

Google Scholar

[29] O. Mercier, K.N. Meltom, and Y. Preville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metall, 27 (1979) 1467-1475.

DOI: 10.1016/0001-6160(79)90169-x

Google Scholar

[30] S. Kustov, and J. Van Humbeeck, Damping properties of SMA, Advances in Shape Memory Materials, Materials Science Forum, 583 (2008) 85-109.

DOI: 10.4028/www.scientific.net/msf.583.85

Google Scholar

[31] V.A. Lobodyuk, Yu. N. Koval', and V.G. Pushin, Crystal-structural features of pretransition phenomena and thermoelastic martensitic transformationsin alloys of nonferrous metals, Phys. Met. Metallogr., 111 (2011) 165-189.

DOI: 10.1134/s0031918x11010212

Google Scholar

[32] V.V. Rubanik, V.V. Rubanik Jr., Y.V. Tsarenko, A.E. Volkov, and S.P. Belyaev, BY Patent 4065 (2001).

Google Scholar

[33] Shape Memory Effects in alloys, Ed. J. Perkins. Plenum Press, London, (1975).

Google Scholar

[34] V.N. Khachin, V.G. Pushin, and V.V. Kondrat'ev, Titanium Nickelide: Structure and Properties, Nauka, Moscow, 1992 [in Russian].

Google Scholar

[35] V.G. Pushin, Alloys with a Thermomechanical Memory: Structure, Properties, and Application, Phys. Met. Metallogr., 90 (2000) 568-595.

Google Scholar

[36] V.V. Rubanik, Jr., V.V. Klubovich, V.V. Rubanik, and A.V. Shadursky, Modeling of Ultrasonic Initiation of Shape Memory Effect, Materials Eng. and Performance, 20 (2011) 731-736.

DOI: 10.1007/s11665-011-9851-1

Google Scholar