Novel Fork Architectures of Ag2S Nanoparticles Synthesized through In Situ Self-Assembly inside Chitosan Matrix

Article Preview

Abstract:

In a simple reaction between Silver nitrate and Thiourea under the presence of Chitosan, novel fork architectures of silver sulfide (Ag2S) were obtained through In-situ self-assembly of Ag2S nanoparticles inside Chitosan matrix in aqueous basic environment. Samples were characterized by SEM, TEM, XRD, FTIR, Raman Spectroscopy and UV-vis Spectroscopy. Average particle size was found to be 8 nm from TEM analysis. Formation of crystalline monoclinic α-Ag2S was confirmed by SAED and X-ray diffraction analysis. The experimental results show that the fork architectures of Ag2S can be obtained from Tape like assemblies of Ag2S nanoparticles at the later stage of their growth with temperature. Raman spectra confirm the incorporation of Ag2S nanoparticles inside Chitosan matrix. Multiple resonant Raman peaks indicates that the yielded Ag2S nanoparticles possess good optical quality and crystalinity. FTIR spectra indicates that the Ag + ion is coupled with the C=O bond of the Chitosan molecules through the electrostatic interaction. UV-vis absorption spectrum of the Ag2S Fork architectures has a broad absorption band in the UV to visible region, and the blue-shifting of the band is observed along with the presence of both direct and indirect band gap.

You have full access to the following eBook

Info:

[1] Kumar R.; Prakash K. H.; Cheang ; Gower P. L. and . Khor K. A, Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J. R. Soc. Interface 5 (2006) 427-439.

DOI: 10.1098/rsif.2007.1141

Google Scholar

[2] R. Singh, V. M. Maru, P. S .J. Moharir, Complex chaotic systems and emergent phenomena. J. Nonlinear Sci. 8 (1998) 235-259.

DOI: 10.1007/s003329900051

Google Scholar

[3] Adachi, Three-Dimensional Self-Assembly of Gold Nanocolloids in Spheroids Due to Dialysis in the Presence of Sodium Mercaptoacetate. E. Langmuir 16 (2000) 6460.

DOI: 10.1021/la000244x

Google Scholar

[4] Y Chen, Z Rosenzweig, Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett. 2 (2002) 1299-1302.

DOI: 10.1021/nl025767z

Google Scholar

[5] Y. Chen, T. Ji, Z. Rosenzweig, Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots. Nano Lett. 3 (2003) 581-584.

DOI: 10.1021/nl034086g

Google Scholar

[6] T. Yonezawa, H. Matsune, N. Kimizuka, Formation of Isolated Spherical Three Units by Using an Inorganic Wrapping Technique. Adv. Mater. 15 (2003) 499.

DOI: 10.1002/adma.200390115

Google Scholar

[7] C. F. J. Faul, M. Antonietti, Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Adv. Mater. 15 (2003) 673-683.

DOI: 10.1002/adma.200300379

Google Scholar

[8] M. G. Ryadnov, B. Ceyhan, C. M. Niemeyer, D. N. Woolfson, Belt and Braces,:  A Peptide-Based Linker System of de Novo Design. J. Am. Chem. Soc. 125 (2003) 9388-9394.

DOI: 10.1021/ja0352045

Google Scholar

[9] M. Maye Mathew, Jin Luo, I-Im S. Lim., Li Han, Nancy N. Kariuki, Rabinovich Daniel, Tianbo Liu, and Chuan-Jian Zhong. Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand . J. Am. Chem. Soc. 125 (2003) 9906-9907.

DOI: 10.1021/ja0363866

Google Scholar

[10] M. Maye Mathew, I-Im S. Lim, Jin Luo, Zia Rab, Daniel Rabinovich, Tianbo Liu and Chuan-Jian Zhong. Mediator−Template Assembly of Nanoparticles. J. Am. Chem. Soc. 127 (2005)1519-1529.

DOI: 10.1021/ja044408y

Google Scholar

[11] M. M. Stevens, N. T. Flynn, C. Wang, T. D.A., Langer, R Coiled-Coil-Based Assembly of Gold Nanoparticles. Adv. Mater. 16 (2004) 915-918.

DOI: 10.1002/adma.200306430

Google Scholar

[12] T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, U. Banin, Nano@micro: General Method for Entrapment of Nanocrystals in Sol−Gel-Derived Composite Hydrophobic Silica Spheres. Chem. Mater. 17 (2005) 258-263.

DOI: 10.1021/cm048477n

Google Scholar

[13] I. Hussain, Z. Wang, A. I. Cooper, M. Brust, Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir 22 (2006) 2938-2941.

DOI: 10.1021/la053126o

Google Scholar

[14] J. N. Cha, H. Birkedal, L. E. Euliss, M. H. Bartl, M. S. Wong, T. J. Deming, G. D. Stucky, Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. J. Am. Chem. Soc. 125 (2003) 8285.

DOI: 10.1021/ja0279601

Google Scholar

[15] R. Shenhar, T. B. Norsten, V. M. Rotello, Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications. Adv. Mater. 17 (2005) 657-669.

DOI: 10.1002/adma.200401291

Google Scholar

[16] C. Wang, X. Zhang, X. Qian, W. Wang, Y. Qian, Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution. Mater. Res. Bull. 33 (1998) 1083-1086.

DOI: 10.1016/s0025-5408(98)00077-4

Google Scholar

[17] G. Hodes, J Manassen, D. Cahen, Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes Nature 261 (1976) 403-404.

DOI: 10.1038/261403a0

Google Scholar

[18] S. Kitova, J. Eneva, A. Panov, H. aefkeH Infrared Photography Based on Vapour-Deposited Silver Sulfide Thin Films J. Imag. Sci. Technol. 38 (1994) 484-488.

Google Scholar

[19] S. Hull, D.A. Keen, D.S. Sivia, P.A. Madden, M. Wilson , The high-temperature superionic behaviour of Ag2S. J. Phys. Condens. Matter. 14 (2002) 9-17.

DOI: 10.1088/0953-8984/14/1/102

Google Scholar

[20] L. Motte, F. Billoudet, E. Lacaze, J Douin, M P Pileni Self-Organization into 2D and 3D Superlattices of Nanosized Particles Differing by Their Size J. Phys. Chem. B. 101 (1997)138-44.

DOI: 10.1021/jp962398k

Google Scholar

[21] L. Motte and M. P. Pileni Self assemblies of silver sulfide nanocrystals: influence of length of thio-alkyl chains used as coating agent. Appl. Surf. Sc. 164 (2000) 60-7.

DOI: 10.1016/s0169-4332(00)00325-1

Google Scholar

[22] F. Gao, Q. Lu, S. Komarneni, Interface Reaction for the Self-Assembly of Silver Nanocrystals under Microwave-Assisted Solvothermal Conditions. Chem. Mater. 17 (2005) 856-860.

DOI: 10.1021/cm048663t

Google Scholar

[23] F. Gao, Q. L, D. Zhao, Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett. 3 (2003) 85-88.

Google Scholar

[24] C. Rui, N. T Nuhfer. Laura Moussa, H. R. Morris , P. M. Whitmore, Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas., Nanotechnology. 19 (2008) 455604.

DOI: 10.1088/0957-4484/19/45/455604

Google Scholar

[25] J.F. Zhu, Y.J. Zhu, M. G. Ma, L. X. Yang ,L. Ga, Simultaneous and Rapid Microwave Synthesis of Polyacrylamide−Metal Sulfide (Ag2S, Cu2S, HgS) Nanocomposites. J. Phys. Chem. C. 111 (2007) 3920-3926.

DOI: 10.1021/jp0677851

Google Scholar

[26] D.K. Bozanić , V. Djoković , J. Blanusa , P.S. Nair , M.K. Georges , T. Radhakrishnan , Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. Eur Phys J E Soft Matter. 22 (2007) 51-9.

DOI: 10.1140/epje/e2007-00008-y

Google Scholar

[27] M. Green, N. Allsop, G. Wakefield, P. Dobson, J.L. Hutchison, Trialkylphosphine oxide/amine stabilised silver nanocrystals - the importance of steric factors and Lewis basicity in capping agents J. Mater. Chem. 12 (2002) 2671-2674.

DOI: 10.1039/b203974e

Google Scholar

[28] J. Xiao, Y. Xie , R. Tang, W. Luo, Template-based synthesis of nanoscale Ag2E (E ~ S, Se) dendrites, J. Mater. Chem. 12(2002) 1148-1151.

DOI: 10.1039/b110249d

Google Scholar

[29] Y. Hyunmin, Li-Qun Wu, E. B. William, G. Reza, W. R. Gary, N. C. James, F. P. Gregory, Biofabrication with chitosan. Biomacromolecules. 6 (2005) 2881-2894.

Google Scholar

[30] A. J Varma, S. V. Deshpande, J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polym. 55 (2004)77-93.

DOI: 10.1016/j.carbpol.2003.08.005

Google Scholar

[31] G. A. Wiegers, Am. Mineral. 56 (1971)1882-1888.

Google Scholar

[32] Y. Ma, T. Zhou, C. Zhao, Preparation of Chitosan-nylon- 6 blended membranes containing silver ions as antibacterial materials, Carbohydr Res. 343 (2008) 230-237.

DOI: 10.1016/j.carres.2007.11.006

Google Scholar

[33] Y. F. Zhu, D. H. Fan, and W. Z. Shen, Chemical Conversion Synthesis and Optical Properties of Metal Sulfide Hollow Microspheres, Langmuir, 24 (2008)11131-11136.

DOI: 10.1021/la801523h

Google Scholar

[34] C. J. Sandroff, S. Garoff, and K. P. Leung, Surface-enhanced Raman study of the solid/liquid interface: Conformational changes in adsorbed molecules Chem. Phys. Lett. 96 (1983) 547-551.

DOI: 10.1016/0009-2614(83)80445-x

Google Scholar

[35] M. Osada, K. Terabe, C. Liang and T. Hasegawa, Nanoscale characterization of defect structures on Ag2S/Ag nanowires, 214th ECS Meeting, B10 - Solid State Ionic Devices 6 - Nano Ionics, (2008).

DOI: 10.1149/ma2008-02/13/1406

Google Scholar

[36] A. Goswami, Thin Film Fundamentals, New Age International, New Delhi, (1996).

Google Scholar

[37] D. Routkevitch, T. Bigioni, M. Moskovists, J.M. Xu, Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates. J. Phys. Chem. 100 (1996) 14037-14047.

DOI: 10.1021/jp952910m

Google Scholar

[38] J. Lee, Thin solid Films, 170 (2000) 451.

Google Scholar

[39] B. Kumar, H. Gong, S.Y. Chow, S. Tripathy, Y. N. Hua, Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. Appl. Phys. Lett. 89 (2006) 071922.

DOI: 10.1063/1.2336997

Google Scholar

[40] A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, Quantum dots of metal sulfides and zinc oxide in organic matrices Optical Phonons in Nanoclusters Formed by the Langmuir-Blodgett Technique. Chinese J. of Phy. 49 (2011) 63.

Google Scholar

[41] Jacob D. Goodrich; William T. Winter, r-Chitin Nanocrystals Prepared from Shrimp Shells and Their Specific Surface Area Measuremen, Bio-macromolecules. 8 (2007) 252-257.

DOI: 10.1021/bm0603589

Google Scholar

[42] K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin, Heidelberg, New York, London, (1991).

Google Scholar

[43] N.B. Hannay (Ed. ), Semiconductors, Reinhold Publishing, (1962).

Google Scholar

[44] A.I. Kryukov; N.N. Zin'chuk; A.V. Korzhak; S. Ya. Kuchmii Quantum Size Effects and Nature of Photoprocesses in Nanoparticles of Ag2S Theor. Experim. Chem. 37 (2001) 296-303.

Google Scholar

[45] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95 (1991) 525-532.

DOI: 10.1021/j100155a009

Google Scholar

[46] H. Sigel, R. B. Martin, Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82 (1982) 385-426.

DOI: 10.1021/cr00050a003

Google Scholar

[47] X. Wang, Y. Du, L. Fan, H. Liu, and Y. Hu, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. Polymer Bulletin 55 (2005)105-113.

Google Scholar

[48] B. Olenyuk, J. A. Whiteford, A. Fechtenkotter, P. Stang, Self-assembly of nanoscale cuboctahedra by coordination chemistry, Nature. 398 (1999) 796-799.

DOI: 10.1038/19740

Google Scholar

[49] J. M. Lehn, Supramolecular chemistry and chemical synthesis. From molecular interactions to self-assembly NATO ASI Ser. Ser. E. 320 (1996) 511.

Google Scholar

[50] L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, J. Am. Chem. Soc. 122 (2000) 12700.

DOI: 10.1021/ja003055+

Google Scholar