[1]
Kumar R.; Prakash K. H.; Cheang ; Gower P. L. and . Khor K. A, Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J. R. Soc. Interface 5 (2006) 427-439.
DOI: 10.1098/rsif.2007.1141
Google Scholar
[2]
R. Singh, V. M. Maru, P. S .J. Moharir, Complex chaotic systems and emergent phenomena. J. Nonlinear Sci. 8 (1998) 235-259.
DOI: 10.1007/s003329900051
Google Scholar
[3]
Adachi, Three-Dimensional Self-Assembly of Gold Nanocolloids in Spheroids Due to Dialysis in the Presence of Sodium Mercaptoacetate. E. Langmuir 16 (2000) 6460.
DOI: 10.1021/la000244x
Google Scholar
[4]
Y Chen, Z Rosenzweig, Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett. 2 (2002) 1299-1302.
DOI: 10.1021/nl025767z
Google Scholar
[5]
Y. Chen, T. Ji, Z. Rosenzweig, Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots. Nano Lett. 3 (2003) 581-584.
DOI: 10.1021/nl034086g
Google Scholar
[6]
T. Yonezawa, H. Matsune, N. Kimizuka, Formation of Isolated Spherical Three Units by Using an Inorganic Wrapping Technique. Adv. Mater. 15 (2003) 499.
DOI: 10.1002/adma.200390115
Google Scholar
[7]
C. F. J. Faul, M. Antonietti, Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Adv. Mater. 15 (2003) 673-683.
DOI: 10.1002/adma.200300379
Google Scholar
[8]
M. G. Ryadnov, B. Ceyhan, C. M. Niemeyer, D. N. Woolfson, Belt and Braces,: A Peptide-Based Linker System of de Novo Design. J. Am. Chem. Soc. 125 (2003) 9388-9394.
DOI: 10.1021/ja0352045
Google Scholar
[9]
M. Maye Mathew, Jin Luo, I-Im S. Lim., Li Han, Nancy N. Kariuki, Rabinovich Daniel, Tianbo Liu, and Chuan-Jian Zhong. Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand . J. Am. Chem. Soc. 125 (2003) 9906-9907.
DOI: 10.1021/ja0363866
Google Scholar
[10]
M. Maye Mathew, I-Im S. Lim, Jin Luo, Zia Rab, Daniel Rabinovich, Tianbo Liu and Chuan-Jian Zhong. Mediator−Template Assembly of Nanoparticles. J. Am. Chem. Soc. 127 (2005)1519-1529.
DOI: 10.1021/ja044408y
Google Scholar
[11]
M. M. Stevens, N. T. Flynn, C. Wang, T. D.A., Langer, R Coiled-Coil-Based Assembly of Gold Nanoparticles. Adv. Mater. 16 (2004) 915-918.
DOI: 10.1002/adma.200306430
Google Scholar
[12]
T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, U. Banin, Nano@micro: General Method for Entrapment of Nanocrystals in Sol−Gel-Derived Composite Hydrophobic Silica Spheres. Chem. Mater. 17 (2005) 258-263.
DOI: 10.1021/cm048477n
Google Scholar
[13]
I. Hussain, Z. Wang, A. I. Cooper, M. Brust, Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir 22 (2006) 2938-2941.
DOI: 10.1021/la053126o
Google Scholar
[14]
J. N. Cha, H. Birkedal, L. E. Euliss, M. H. Bartl, M. S. Wong, T. J. Deming, G. D. Stucky, Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. J. Am. Chem. Soc. 125 (2003) 8285.
DOI: 10.1021/ja0279601
Google Scholar
[15]
R. Shenhar, T. B. Norsten, V. M. Rotello, Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications. Adv. Mater. 17 (2005) 657-669.
DOI: 10.1002/adma.200401291
Google Scholar
[16]
C. Wang, X. Zhang, X. Qian, W. Wang, Y. Qian, Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution. Mater. Res. Bull. 33 (1998) 1083-1086.
DOI: 10.1016/s0025-5408(98)00077-4
Google Scholar
[17]
G. Hodes, J Manassen, D. Cahen, Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes Nature 261 (1976) 403-404.
DOI: 10.1038/261403a0
Google Scholar
[18]
S. Kitova, J. Eneva, A. Panov, H. aefkeH Infrared Photography Based on Vapour-Deposited Silver Sulfide Thin Films J. Imag. Sci. Technol. 38 (1994) 484-488.
Google Scholar
[19]
S. Hull, D.A. Keen, D.S. Sivia, P.A. Madden, M. Wilson , The high-temperature superionic behaviour of Ag2S. J. Phys. Condens. Matter. 14 (2002) 9-17.
DOI: 10.1088/0953-8984/14/1/102
Google Scholar
[20]
L. Motte, F. Billoudet, E. Lacaze, J Douin, M P Pileni Self-Organization into 2D and 3D Superlattices of Nanosized Particles Differing by Their Size J. Phys. Chem. B. 101 (1997)138-44.
DOI: 10.1021/jp962398k
Google Scholar
[21]
L. Motte and M. P. Pileni Self assemblies of silver sulfide nanocrystals: influence of length of thio-alkyl chains used as coating agent. Appl. Surf. Sc. 164 (2000) 60-7.
DOI: 10.1016/s0169-4332(00)00325-1
Google Scholar
[22]
F. Gao, Q. Lu, S. Komarneni, Interface Reaction for the Self-Assembly of Silver Nanocrystals under Microwave-Assisted Solvothermal Conditions. Chem. Mater. 17 (2005) 856-860.
DOI: 10.1021/cm048663t
Google Scholar
[23]
F. Gao, Q. L, D. Zhao, Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett. 3 (2003) 85-88.
Google Scholar
[24]
C. Rui, N. T Nuhfer. Laura Moussa, H. R. Morris , P. M. Whitmore, Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas., Nanotechnology. 19 (2008) 455604.
DOI: 10.1088/0957-4484/19/45/455604
Google Scholar
[25]
J.F. Zhu, Y.J. Zhu, M. G. Ma, L. X. Yang ,L. Ga, Simultaneous and Rapid Microwave Synthesis of Polyacrylamide−Metal Sulfide (Ag2S, Cu2S, HgS) Nanocomposites. J. Phys. Chem. C. 111 (2007) 3920-3926.
DOI: 10.1021/jp0677851
Google Scholar
[26]
D.K. Bozanić , V. Djoković , J. Blanusa , P.S. Nair , M.K. Georges , T. Radhakrishnan , Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. Eur Phys J E Soft Matter. 22 (2007) 51-9.
DOI: 10.1140/epje/e2007-00008-y
Google Scholar
[27]
M. Green, N. Allsop, G. Wakefield, P. Dobson, J.L. Hutchison, Trialkylphosphine oxide/amine stabilised silver nanocrystals - the importance of steric factors and Lewis basicity in capping agents J. Mater. Chem. 12 (2002) 2671-2674.
DOI: 10.1039/b203974e
Google Scholar
[28]
J. Xiao, Y. Xie , R. Tang, W. Luo, Template-based synthesis of nanoscale Ag2E (E ~ S, Se) dendrites, J. Mater. Chem. 12(2002) 1148-1151.
DOI: 10.1039/b110249d
Google Scholar
[29]
Y. Hyunmin, Li-Qun Wu, E. B. William, G. Reza, W. R. Gary, N. C. James, F. P. Gregory, Biofabrication with chitosan. Biomacromolecules. 6 (2005) 2881-2894.
Google Scholar
[30]
A. J Varma, S. V. Deshpande, J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polym. 55 (2004)77-93.
DOI: 10.1016/j.carbpol.2003.08.005
Google Scholar
[31]
G. A. Wiegers, Am. Mineral. 56 (1971)1882-1888.
Google Scholar
[32]
Y. Ma, T. Zhou, C. Zhao, Preparation of Chitosan-nylon- 6 blended membranes containing silver ions as antibacterial materials, Carbohydr Res. 343 (2008) 230-237.
DOI: 10.1016/j.carres.2007.11.006
Google Scholar
[33]
Y. F. Zhu, D. H. Fan, and W. Z. Shen, Chemical Conversion Synthesis and Optical Properties of Metal Sulfide Hollow Microspheres, Langmuir, 24 (2008)11131-11136.
DOI: 10.1021/la801523h
Google Scholar
[34]
C. J. Sandroff, S. Garoff, and K. P. Leung, Surface-enhanced Raman study of the solid/liquid interface: Conformational changes in adsorbed molecules Chem. Phys. Lett. 96 (1983) 547-551.
DOI: 10.1016/0009-2614(83)80445-x
Google Scholar
[35]
M. Osada, K. Terabe, C. Liang and T. Hasegawa, Nanoscale characterization of defect structures on Ag2S/Ag nanowires, 214th ECS Meeting, B10 - Solid State Ionic Devices 6 - Nano Ionics, (2008).
DOI: 10.1149/ma2008-02/13/1406
Google Scholar
[36]
A. Goswami, Thin Film Fundamentals, New Age International, New Delhi, (1996).
Google Scholar
[37]
D. Routkevitch, T. Bigioni, M. Moskovists, J.M. Xu, Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates. J. Phys. Chem. 100 (1996) 14037-14047.
DOI: 10.1021/jp952910m
Google Scholar
[38]
J. Lee, Thin solid Films, 170 (2000) 451.
Google Scholar
[39]
B. Kumar, H. Gong, S.Y. Chow, S. Tripathy, Y. N. Hua, Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. Appl. Phys. Lett. 89 (2006) 071922.
DOI: 10.1063/1.2336997
Google Scholar
[40]
A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, Quantum dots of metal sulfides and zinc oxide in organic matrices Optical Phonons in Nanoclusters Formed by the Langmuir-Blodgett Technique. Chinese J. of Phy. 49 (2011) 63.
Google Scholar
[41]
Jacob D. Goodrich; William T. Winter, r-Chitin Nanocrystals Prepared from Shrimp Shells and Their Specific Surface Area Measuremen, Bio-macromolecules. 8 (2007) 252-257.
DOI: 10.1021/bm0603589
Google Scholar
[42]
K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin, Heidelberg, New York, London, (1991).
Google Scholar
[43]
N.B. Hannay (Ed. ), Semiconductors, Reinhold Publishing, (1962).
Google Scholar
[44]
A.I. Kryukov; N.N. Zin'chuk; A.V. Korzhak; S. Ya. Kuchmii Quantum Size Effects and Nature of Photoprocesses in Nanoparticles of Ag2S Theor. Experim. Chem. 37 (2001) 296-303.
Google Scholar
[45]
Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95 (1991) 525-532.
DOI: 10.1021/j100155a009
Google Scholar
[46]
H. Sigel, R. B. Martin, Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82 (1982) 385-426.
DOI: 10.1021/cr00050a003
Google Scholar
[47]
X. Wang, Y. Du, L. Fan, H. Liu, and Y. Hu, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. Polymer Bulletin 55 (2005)105-113.
Google Scholar
[48]
B. Olenyuk, J. A. Whiteford, A. Fechtenkotter, P. Stang, Self-assembly of nanoscale cuboctahedra by coordination chemistry, Nature. 398 (1999) 796-799.
DOI: 10.1038/19740
Google Scholar
[49]
J. M. Lehn, Supramolecular chemistry and chemical synthesis. From molecular interactions to self-assembly NATO ASI Ser. Ser. E. 320 (1996) 511.
Google Scholar
[50]
L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, J. Am. Chem. Soc. 122 (2000) 12700.
DOI: 10.1021/ja003055+
Google Scholar