Performance of PS/PIMA/PPEES Nanofiltration Membranes before and after Alkali Treatment for Filtration of CaCl2 and NaCl

Article Preview

Abstract:

Present article describes about the preparation of Nanofiltration (NF) composite membranes by a simple chemical treatment to the polymeric membrane composed of Poly (isobutylene-alt-maleic anhydride). After composition, anhydride functionality was converted to diacid functionality by hydrolysis using sodium hydroxide solution. Further, membrane was characterized by ATR-IR, DSC and SEM. Charge confirmation was done by IEC. Water uptake and contact angle analysis was carried out to study the hydrophilicity of the membrane. The performance study was carried out by using NaCl and CaCl2 solutions. Membranes were having higher charge density, which has resulted in better performance in terms of rejection of CaCl2 and NaCl solutions. The main focus of this research is to evaluate the effect of alkali treatment on Donnan and size exclusion mechanism during membrane filtration.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

[1] B. V. D. Bruggen, C. Vandecasteele, T. V. Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in waste water treatment and drinking water production, Environ. Progress. 22 (2003) 46–56.

DOI: 10.1002/ep.670220116

Google Scholar

[2] X. Lu, X. Bian, L. Shi, Preparation and characterization of NF composite membrane, J. Membr. Sci. 210 (2002) 3-11.

Google Scholar

[3] B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in drinking water industry. Env. Poll. 122 (2003) 435-445.

DOI: 10.1016/s0269-7491(02)00308-1

Google Scholar

[4] H. D. M. Sombekke, D. K. Voorhoeve, P. Hiemstra, Environmental impact assessment of groundwater treatment with nanofiltration, Desalination 113 (1997) 293–296.

DOI: 10.1016/s0011-9164(97)00144-6

Google Scholar

[5] C. Visvanathan, B. D. Marsono, B. Basu, Removal of THMP by nanofiltration: Effects of interference parameters, Water Res. 32 (1998) 3527–3538.

DOI: 10.1016/s0043-1354(98)00151-1

Google Scholar

[6] B. B. Levine, K. Madireddi, V. Lazarova, M.K. Stentrom, M. Suffet, Treatment of trace organic compounds by membrane processes: At the Lake Arrowhead water reuse pilot plant, Water Sci. Technol. 40 (199) 293–301.

DOI: 10.2166/wst.1999.0603

Google Scholar

[7] Y. Kiso, Y. Nishimura, T. Kitao, K. Nishimura, Rejection properties of non- phenylic pesticides with nanofiltration membranes, J. Membr. Sci. 171 (2000) 229–237.

DOI: 10.1016/s0376-7388(00)00305-7

Google Scholar

[8] T. H. Liu, K.M. Simms, S.A. Zaidi, Selection of ultrafiltration nanofiltration membrane for treatment of textile effluent of textile dyeing wastewater, Water Treatment 9 (1994) 189–198.

Google Scholar

[9] D. Trebouet, J.P. Schlumpf, P. Jaouen, J.P. Maleriat, F. Quemeneur, Effect of operating conditions on the nanofiltration of landfill leachates: Pilot-scale studies, Environ. Technol. 20 (1999) 587–596.

DOI: 10.1080/09593332008616853

Google Scholar

[10] A.G. Fane, P. Macintosh, G. Leslie, Water reclamation, remediation and cleaner production with nanofiltration. In A. I. Schafer, A.G. Fane,T. D. Waite (Eds. ), Nanofiltration Principles and Applications, Chapter 11 Elsevier, Oxford, (2005).

Google Scholar

[11] Z. B. Gonder, S. Arayici, H. Barlas, Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling, Separation and Purification Technology 76 (2011) 292-302.

DOI: 10.1016/j.seppur.2010.10.018

Google Scholar

[12] A. Cassano, R. Molinari,M. Romano,E. Drioli, Treatment ofaqueouseffluents of the leather industry by membrane processes- A review, J. Membr. Sci. 181 (2001) 111-126.

DOI: 10.1016/s0376-7388(00)00399-9

Google Scholar

[13] R. Kettunen, P. Keskitalo, Combination of membrane technology and limestone filtration to control drinking water quality, Desalination 131 (2000) 271-283.

DOI: 10.1016/s0011-9164(00)90025-0

Google Scholar

[14] O. Raff, R. D. Wilken, Removal of dissolved uranium by nanofiltration, Desalination 22 (1999) 147-150.

DOI: 10.1016/s0011-9164(99)00035-1

Google Scholar

[15] M. Al-Sofi, A. Hassan, G. Mustafa, A. Dalvi, M. Kither, Nanofiltration as a means of achieving higher TBT of ≥ 120°C in MSF, Desalination. 118 (1998) 123-129.

DOI: 10.1016/s0011-9164(98)00106-4

Google Scholar

[16] W. Richard Baker, Membrane technology and applications John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. (2004).

DOI: 10.1111/1471-0307.12074

Google Scholar

[17] M. Padaki, A.M. Isloor, B. Ganesh, N. Prabhu, Preparation, characterization and performance study of Poly (isobutylene-alt-maleic anhydride) [PIAM] and Polysulfone [PSf] composite membranes before and after alkali treatment, Ind. Eng. Chem. Res. 50 (2011).

DOI: 10.1021/ie102387n

Google Scholar

[18] C. Hegde, M. Padaki, A.M. Isloor, P. Wanichapichart, L. Yu, Synthesis and desalination performance of Ar+-N+ irradiated polysulfone based new NF membrane, Desalination 265 (2011) 153-158.

DOI: 10.1016/j.desal.2010.07.046

Google Scholar

[19] M. Helen, B. Viswanathan, S. Srinivasa Murthy, Synthesis and characterization of composite membranes based on-zirconium phosphate and silicotungstic acid, J. Membr. Sci. 292 (2007) 98-105.

DOI: 10.1016/j.memsci.2007.01.018

Google Scholar

[20] M. Masuelli, J. Marchese, N. A. Ochoa, SPC/ PVDF membranes for emulsified oily wastewater treatment, J. Membr. Sci. 326 (2009) 688-693.

DOI: 10.1016/j.memsci.2008.11.011

Google Scholar

[21] M. J. Rosa, M. N. de Pinho, Membrane surface characterisation by contact angle measurements using the immersed method, J. Membr. Sci. 131 (1997) 167-180.

DOI: 10.1016/s0376-7388(97)00043-4

Google Scholar

[22] W. Cuihttp: /www. sciencedirect. com/science/article/pii/S1383586698000690 - implicit0, J. Kerres, G. Eigenberger, Development and characterization of ion-exchange polymer blend membranes, Separation and Purification Technology 14 (1998) 145-154.

DOI: 10.1016/s1383-5866(98)00069-0

Google Scholar

[23] T. Toshinori, O. Kazuhisa, K. Masakoto, Y. Tomohisa, Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures, Langmuir 26 (2010) 10897-10905.

DOI: 10.1021/la100791j

Google Scholar

[24] M. Manttari, A. Pihlajamaki, M. Nystom, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci. 280 (2006) 311-320.

DOI: 10.1016/j.memsci.2006.01.034

Google Scholar

[25] A. Seidel, J. J. Waypa, M. Elimelech, Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane. Environ. Eng. Sci. 18 (2001) 105-113.

DOI: 10.1089/10928750151132311

Google Scholar

[26] A. Orecki, M. Tomaszewska, K. Karakulski, A.W. Morawski, Surface water treatment by the nanofiltration method, Desalination 2004, 162, 47-54.

DOI: 10.1016/s0011-9164(04)00026-8

Google Scholar