[1]
A. Das, K.W. Stockelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Kluppel, G. Heinrich, Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends, Polymer 49 (2008).
DOI: 10.1016/j.polymer.2008.09.031
Google Scholar
[2]
V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer, Science and technology of rubber reclamation with special attention to NR-based waste latex products, Prog. Polym. Sci. 31(2006) 811-834.
DOI: 10.1016/j.progpolymsci.2006.08.003
Google Scholar
[3]
N. Rattanasom and S. Prasertsri, Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level, Polymer Testing 28 (2003).
DOI: 10.1016/j.polymertesting.2008.12.010
Google Scholar
[4]
P.K. Pal, S.K. De, Studies of Polymer-filler interaction, network structure, physical properties, filled EPDM rubber in the presences of silane coupling agent, Rubber Chem. Technol. 55 (1982) 1370-1388.
DOI: 10.5254/1.3538153
Google Scholar
[5]
L. Bokobza, O. Rapoport, Silica and carbon black reinforcement of natural rubber, Macromol. Symp., (2003) 125-133.
DOI: 10.1002/masy.200390072
Google Scholar
[6]
K. Murakami, S. Iio, Y. Ikeda, H. Ito, M. Tosaka, S. Kohjiya, Effect of silane-coupling agent on natural rubber filled with silica generated in situ, J. Mater. Sci. 38 (2003) 1447-1455.
DOI: 10.1023/a:1022908211748
Google Scholar
[7]
L. Dewimille, B. Bresson, L. Bokobza, Synthesis, structure and morphology of poly(dimethylsiloxane) networks filledwith in situ generatedsilicaparticles, Polymer 46 (2005) 4135-4143.
DOI: 10.1016/j.polymer.2005.02.049
Google Scholar
[8]
S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, J.E. Mark, Organically-modifiedlayered silicates : a filler for elastomericmaterials, Chem. Mater. 14 (2002) 4202-4208.
DOI: 10.1021/cm020093e
Google Scholar
[9]
M.A. Lopez-Manchado, B. Herrero, M. Arroyo, Preparation and characterization of NR/organoclaynanocomposites, Polym. Int. 52 (2003) 1070-1077.
Google Scholar
[10]
L.F. Valadares, C.A.P. Leite, F. Galembeck, Preparation of natural rubber-montmorillonitenanocomposite in aqueous medium: evidence for polymer-platelet adhesion, Polymer 47 (2006) 672-678.
DOI: 10.1016/j.polymer.2005.11.062
Google Scholar
[11]
M. Arroyo, M.A. Lopez-Manchado, B. Herrero, Organo-montmorillonite as substitute of carbon black in natural rubber compounds, Polymer 44 (2003) 2447-2453.
DOI: 10.1016/s0032-3861(03)00090-9
Google Scholar
[12]
J. Bicerano, J.L. Brewbaker, Reinforcement of polyurethane elastomers with microfibres having varying aspect ratios, J. Chem. Soc. - Faraday Trans. 91 (1995) 2507-2513.
DOI: 10.1039/ft9959102507
Google Scholar
[13]
V.P. Silva, M.C. Goncalves, I.V.P. Yoshida, Biogenic silica short fibers as alternative reinforcing fillers of silicone rubbers, J. Appl. Polym. Sci. 101 (2006) 290-299.
DOI: 10.1002/app.23324
Google Scholar
[14]
J. Maya, F. Bejoy, T. Sabu, K.T. Varughese, Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites, Polym. Compos. 27 (2006) 671-680.
DOI: 10.1002/pc.20250
Google Scholar
[15]
V. Favier, J Cavaille´, G Canova, S. Shrivastava, Mechanical Percolation in Cellulose Whiskers Nanocomposites, Polym. Eng. Sci. 37 (1997) 1732-1739.
DOI: 10.1002/pen.11821
Google Scholar
[16]
S. Masa, F. Alloin, A. Dufresne, Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules 6 (2005) 612-626.
DOI: 10.1021/bm0493685
Google Scholar
[17]
N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics, Biomacromolecules 6 (2005).
DOI: 10.1021/bm050222v
Google Scholar
[18]
G. Raos, M. Moreno, S. Elli, Computational Experiments on Filled Rubber Viscoelasticity: What Is the Role of Particle-Particle Interactions? Macromolecules 39 (2006) 6744-6751.
DOI: 10.1021/ma061008h
Google Scholar
[19]
J. Frohlich, W. Niedermeier, H. -D. Luginsland, The effect of filler filler and filler elastomer interaction on rubber reinforcement, Compos. Part A: Appl. Sci. Manuf. 36 (2005) 449-460.
DOI: 10.1016/j.compositesa.2004.10.004
Google Scholar
[20]
C. -C. Peng, A. Gopfert, M. Drechsler, V. Abetz, Smart, silica rubber nanocomposites in virtue of hydrogen bonding interaction. Polym. Adv. Technol. 16 (2005) 770-782.
DOI: 10.1002/pat.666
Google Scholar
[21]
G. Heinrich, M. Kluppel, Recent advances in the theory of filler networking in elastomers, Filled Elastom Drug Deliv. Syst. (2002) 1-44.
Google Scholar
[22]
J. Ramier, C. Gauthier, L. Chazeau, L. Stelandre, L. Guy, Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment, J. Polym. Sci., Part B: Polym. Phys. 45 (2007) 286-298.
DOI: 10.1002/polb.21033
Google Scholar
[23]
J.P. Salvetat, S. Bhattacharyya, R.B. Pipes, Progress on mechanics of carbon nanotubes and derived materials, J. Nanosci. Nanotechnol. 6 (2006) 1857-1882.
DOI: 10.1166/jnn.2006.305
Google Scholar
[24]
M.D. Frogley, D. Ravich, H.D. Wagner, Mechanical properties of carbon nanoparticle-reinforced elastomers, Compos. Sci. Technol. 63 (2003) 1647-1654.
DOI: 10.1016/s0266-3538(03)00066-6
Google Scholar
[25]
K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Chemical treatment of carbon nanotubes, Carbon 34 (1996) 279-281.
DOI: 10.1016/0008-6223(96)83349-5
Google Scholar
[26]
T. Kyotani, S. Nakazaki, W. Xu, A. Tomita, Chemical modification of the inner walls of carbon nanotubes by HNO oxidation, Carbon 39 (2001) 771-785.
DOI: 10.1016/s0008-6223(01)00013-6
Google Scholar
[27]
T. Saito, K. Matsushige, K. Tanaka, Chemical treatment and modification of multi- walled carbon nanotubes, Physica B Vol. 323 (2002) 280-283.
DOI: 10.1016/s0921-4526(02)00999-7
Google Scholar
[28]
A.A. Azira, Nik Intan Nik Ismail, Che Su M. S, M. Rusop, Effect Of Funtionalized Carbon Nanotubes In Natural Rubber Matrix, AMSN 2010 2nd ASEAN-APCTP Workshop on Advanced Materials Science and Nanotechnology, (2010).
DOI: 10.1063/1.4732465
Google Scholar
[29]
I.E. Skeist, Handbook of Adhesives, Van Nostrand Reinhold, New York (1990).
Google Scholar
[30]
A.M. Sadequl, B. T. Poh, U.S. Ishiaku, Effect of filler loading on the mechanical properties of epoxidized natural rubber (ENR 25) compared with natural rubber ( SMR L), International Journal of Polymeric Materials 43 (1999)261-278.
DOI: 10.1080/00914039908009689
Google Scholar
[31]
A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, Hydrogen Storage in Carbon Single Wall Nanotubes, Proceedings of the 2000 DOE/NREL, Hydrogen Program Review, (2000).
Google Scholar
[32]
R. Gotoh, T. Takenaka, N. Hayama, Z. Kolloid, Simultaneous measurements of stress and infrared dicroism on polymers, Polym. 205 (1965) 18-24.
DOI: 10.1007/bf01499844
Google Scholar
[33]
H.W. Siesler, Characterization of polymer deformation by vibrational spectroscopy, Advanced Polymer Science Vol. 65 (1984) 1-78.
Google Scholar
[34]
B. Amram, L. Bokobza, J.P. Queslel, L. Monnerie, Fourier-transform infrared dichroism study of molecular orientation in synthetic high cis-1, 4-polyisoprene and in natural rubber, Polymer 27 (1986) 877-882.
DOI: 10.1016/0032-3861(86)90298-3
Google Scholar
[35]
C.A. Cooper, R.J. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and composites through the use of Raman Spectroscopy, Composites: Part A 32 (2001) 401-411.
DOI: 10.1016/s1359-835x(00)00107-x
Google Scholar