Characterization of Multi-Walled Carbon Nanotubes/Natural Rubber Nanocomposite by Wet Mixing Method

Article Preview

Abstract:

Multi-walled carbon nanotubes/natural rubber (MWCNTs/NR) nanocomposites is formed by incorporating nanotubes in a polymer solution and subsequently evaporating the solvent. Using this technique, nanotubes will be dispersed homogeneously in the NR matrix in an attempt to increase the mechanical properties of these nanocomposites. Mechanical test results show an increase in the tensile strength for up to 19 times in relation to pure NR. In addition to mechanical testing, the morphology of the MWNTs into NR was studied by Field Emission Scanning Electron Microscopy (FESEM) in order to understand the morphology of the resulting system. Slight shift noted from FTIR and Raman analyses from each different wt. % of MWCNTs with the NR due to the stress transfer that indicates reinforcement of the nanotubes.

You have full access to the following eBook

Info:

[1] A. Das, K.W. Stockelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Kluppel, G. Heinrich, Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends, Polymer 49 (2008).

DOI: 10.1016/j.polymer.2008.09.031

Google Scholar

[2] V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer, Science and technology of rubber reclamation with special attention to NR-based waste latex products, Prog. Polym. Sci. 31(2006) 811-834.

DOI: 10.1016/j.progpolymsci.2006.08.003

Google Scholar

[3] N. Rattanasom and S. Prasertsri, Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level, Polymer Testing 28 (2003).

DOI: 10.1016/j.polymertesting.2008.12.010

Google Scholar

[4] P.K. Pal, S.K. De, Studies of Polymer-filler interaction, network structure, physical properties, filled EPDM rubber in the presences of silane coupling agent, Rubber Chem. Technol. 55 (1982) 1370-1388.

DOI: 10.5254/1.3538153

Google Scholar

[5] L. Bokobza, O. Rapoport, Silica and carbon black reinforcement of natural rubber, Macromol. Symp., (2003) 125-133.

DOI: 10.1002/masy.200390072

Google Scholar

[6] K. Murakami, S. Iio, Y. Ikeda, H. Ito, M. Tosaka, S. Kohjiya, Effect of silane-coupling agent on natural rubber filled with silica generated in situ, J. Mater. Sci. 38 (2003) 1447-1455.

DOI: 10.1023/a:1022908211748

Google Scholar

[7] L. Dewimille, B. Bresson, L. Bokobza, Synthesis, structure and morphology of poly(dimethylsiloxane) networks filledwith in situ generatedsilicaparticles, Polymer 46 (2005) 4135-4143.

DOI: 10.1016/j.polymer.2005.02.049

Google Scholar

[8] S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, J.E. Mark, Organically-modifiedlayered silicates : a filler for elastomericmaterials, Chem. Mater. 14 (2002) 4202-4208.

DOI: 10.1021/cm020093e

Google Scholar

[9] M.A. Lopez-Manchado, B. Herrero, M. Arroyo, Preparation and characterization of NR/organoclaynanocomposites, Polym. Int. 52 (2003) 1070-1077.

Google Scholar

[10] L.F. Valadares, C.A.P. Leite, F. Galembeck, Preparation of natural rubber-montmorillonitenanocomposite in aqueous medium: evidence for polymer-platelet adhesion, Polymer 47 (2006) 672-678.

DOI: 10.1016/j.polymer.2005.11.062

Google Scholar

[11] M. Arroyo, M.A. Lopez-Manchado, B. Herrero, Organo-montmorillonite as substitute of carbon black in natural rubber compounds, Polymer 44 (2003) 2447-2453.

DOI: 10.1016/s0032-3861(03)00090-9

Google Scholar

[12] J. Bicerano, J.L. Brewbaker, Reinforcement of polyurethane elastomers with microfibres having varying aspect ratios, J. Chem. Soc. - Faraday Trans. 91 (1995) 2507-2513.

DOI: 10.1039/ft9959102507

Google Scholar

[13] V.P. Silva, M.C. Goncalves, I.V.P. Yoshida, Biogenic silica short fibers as alternative reinforcing fillers of silicone rubbers, J. Appl. Polym. Sci. 101 (2006) 290-299.

DOI: 10.1002/app.23324

Google Scholar

[14] J. Maya, F. Bejoy, T. Sabu, K.T. Varughese, Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites, Polym. Compos. 27 (2006) 671-680.

DOI: 10.1002/pc.20250

Google Scholar

[15] V. Favier, J Cavaille´, G Canova, S. Shrivastava, Mechanical Percolation in Cellulose Whiskers Nanocomposites, Polym. Eng. Sci. 37 (1997) 1732-1739.

DOI: 10.1002/pen.11821

Google Scholar

[16] S. Masa, F. Alloin, A. Dufresne, Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules 6 (2005) 612-626.

DOI: 10.1021/bm0493685

Google Scholar

[17] N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics, Biomacromolecules 6 (2005).

DOI: 10.1021/bm050222v

Google Scholar

[18] G. Raos, M. Moreno, S. Elli, Computational Experiments on Filled Rubber Viscoelasticity: What Is the Role of Particle-Particle Interactions? Macromolecules 39 (2006) 6744-6751.

DOI: 10.1021/ma061008h

Google Scholar

[19] J. Frohlich, W. Niedermeier, H. -D. Luginsland, The effect of filler filler and filler elastomer interaction on rubber reinforcement, Compos. Part A: Appl. Sci. Manuf. 36 (2005) 449-460.

DOI: 10.1016/j.compositesa.2004.10.004

Google Scholar

[20] C. -C. Peng, A. Gopfert, M. Drechsler, V. Abetz, Smart, silica rubber nanocomposites in virtue of hydrogen bonding interaction. Polym. Adv. Technol. 16 (2005) 770-782.

DOI: 10.1002/pat.666

Google Scholar

[21] G. Heinrich, M. Kluppel, Recent advances in the theory of filler networking in elastomers, Filled Elastom Drug Deliv. Syst. (2002) 1-44.

Google Scholar

[22] J. Ramier, C. Gauthier, L. Chazeau, L. Stelandre, L. Guy, Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment, J. Polym. Sci., Part B: Polym. Phys. 45 (2007) 286-298.

DOI: 10.1002/polb.21033

Google Scholar

[23] J.P. Salvetat, S. Bhattacharyya, R.B. Pipes, Progress on mechanics of carbon nanotubes and derived materials, J. Nanosci. Nanotechnol. 6 (2006) 1857-1882.

DOI: 10.1166/jnn.2006.305

Google Scholar

[24] M.D. Frogley, D. Ravich, H.D. Wagner, Mechanical properties of carbon nanoparticle-reinforced elastomers, Compos. Sci. Technol. 63 (2003) 1647-1654.

DOI: 10.1016/s0266-3538(03)00066-6

Google Scholar

[25] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Chemical treatment of carbon nanotubes, Carbon 34 (1996) 279-281.

DOI: 10.1016/0008-6223(96)83349-5

Google Scholar

[26] T. Kyotani, S. Nakazaki, W. Xu, A. Tomita, Chemical modification of the inner walls of carbon nanotubes by HNO oxidation, Carbon 39 (2001) 771-785.

DOI: 10.1016/s0008-6223(01)00013-6

Google Scholar

[27] T. Saito, K. Matsushige, K. Tanaka, Chemical treatment and modification of multi- walled carbon nanotubes, Physica B Vol. 323 (2002) 280-283.

DOI: 10.1016/s0921-4526(02)00999-7

Google Scholar

[28] A.A. Azira, Nik Intan Nik Ismail, Che Su M. S, M. Rusop, Effect Of Funtionalized Carbon Nanotubes In Natural Rubber Matrix, AMSN 2010 2nd ASEAN-APCTP Workshop on Advanced Materials Science and Nanotechnology, (2010).

DOI: 10.1063/1.4732465

Google Scholar

[29] I.E. Skeist, Handbook of Adhesives, Van Nostrand Reinhold, New York (1990).

Google Scholar

[30] A.M. Sadequl, B. T. Poh, U.S. Ishiaku, Effect of filler loading on the mechanical properties of epoxidized natural rubber (ENR 25)  compared with natural rubber ( SMR L), International Journal of Polymeric Materials 43 (1999)261-278.

DOI: 10.1080/00914039908009689

Google Scholar

[31] A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, Hydrogen Storage in Carbon Single Wall Nanotubes, Proceedings of the 2000 DOE/NREL, Hydrogen Program Review, (2000).

Google Scholar

[32] R. Gotoh, T. Takenaka, N. Hayama, Z. Kolloid, Simultaneous measurements of stress and infrared dicroism on polymers, Polym. 205 (1965) 18-24.

DOI: 10.1007/bf01499844

Google Scholar

[33] H.W. Siesler, Characterization of polymer deformation by vibrational spectroscopy, Advanced Polymer Science Vol. 65 (1984) 1-78.

Google Scholar

[34] B. Amram, L. Bokobza, J.P. Queslel, L. Monnerie, Fourier-transform infrared dichroism study of molecular orientation in synthetic high cis-1, 4-polyisoprene and in natural rubber, Polymer 27 (1986) 877-882.

DOI: 10.1016/0032-3861(86)90298-3

Google Scholar

[35] C.A. Cooper, R.J. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and composites through the use of Raman Spectroscopy, Composites: Part A 32 (2001) 401-411.

DOI: 10.1016/s1359-835x(00)00107-x

Google Scholar