Correlation of Surface Properties and Photocatalytic Activity of Nanocrystalline TiO2 on the Synthesis Route

Article Preview

Abstract:

Present work describes the synthesis of nanocrystalline TiO2 photocatalyst using sol-gel and solution combustion methods and their characterisation by powder X-ray Diffraction, Diffuse Reflectance Spectroscopy, surface area measurement, FT-IR, FT-Raman, Thermo Gravimetric Analysis, and Transmission Electron Microscopy. Their photocatalytic activity was evaluated by the degradation of two nitro aromatic pollutants, viz. para-nitroaniline (PNA) & meta-dinitrobenzoic acid (DNBA) commonly observed in nitroaromatic plants. Performance of the synthesized catalysts was compared with commercial Degussa P25 sample. The photocatalytic degradation and total mineralization were monitored using UV/VIS spectrophotometer and total organic carbon content analysis respectively. The materials properties such as crystallinity and surface hydroxyl group on the nanocrystalline TiO2 played crucial role for the total mineralization of the nitroaromatics.

You have full access to the following eBook

Info:

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode,  Nature (London) 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[3] A.L. Pruden, D.F. Ollis, Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, J. Catal. 82 (1983) 404-417.

DOI: 10.1016/0021-9517(83)90207-5

Google Scholar

[4] C. Y. Hsiao, C. L. Lee, D. F. Ollis, Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst, J. Catal. 82 (1983) 418-423.

DOI: 10.1016/0021-9517(83)90208-7

Google Scholar

[5] A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A. 108 (1997) 1-35.

Google Scholar

[6] D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res. 1 (1999) 439-458.

Google Scholar

[7] Y. Bessekhouad, D. Robert, J. V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: Optimization of the preparation conditions, J. Photochem. Photobiol. A Chem. 157 (2003) 47-53.

DOI: 10.1016/s1010-6030(03)00077-7

Google Scholar

[8] K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano TiO2, Appl. Catal. B. 48 (2004) 83-93.

DOI: 10.1016/j.apcatb.2003.09.013

Google Scholar

[9] K. D. Kim, H. T. Kim, Synthesis of titanium dioxide nanoparticles using a continuous reaction method, Colloids and Surfaces A: Physicochem. Eng. Aspects 207 (2002) 263-269.

DOI: 10.1016/s0927-7757(02)00140-1

Google Scholar

[10] Y. Li, T.J. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles, J. Solid State Chem. 177 (2004) 1372-1381.

DOI: 10.1016/j.jssc.2003.11.016

Google Scholar

[11] L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Mater. Res. Bull. 36 (2001) 811-825.

DOI: 10.1016/s0025-5408(00)00482-7

Google Scholar

[12] D. Vorkapic, T. J. Matsoukas, Reversible agglomeration: A kinetic model for the peptization of titania nanocolloids, Colloid Interface Sci. 214 (1999) 283-291.

DOI: 10.1006/jcis.1999.6218

Google Scholar

[13] G. Sivalingam, K. Nagaveni, M. S. Hegde, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2,  Appl. Catal. B. 45 (2003) 23-38.

DOI: 10.1016/s0926-3373(03)00124-3

Google Scholar

[14] K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, Photocatalytic Degradation of Organic Compounds over Combustion-Synthesized Nano-TiO2, Environ. Sci. Technol. 38 (2004)1600-1604.

DOI: 10.1021/es034696i

Google Scholar

[15] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for nitrobenzene; U.S. Department of Health and Human Services: Atlanta, GA, 1990. Public Health Service website: http: / www. atsdr. cdc. gov/taxfaq. html.

DOI: 10.4135/9781412963855.n24

Google Scholar

[16] A. C. Schmidt, R. Herzschuh, F. M. Matysik, W. Engewald, Investigation of the ionisation and fragmentation behaviour of different nitroaromatic compounds occurring as polar metabolites of explosives using electrospray ionisation tandem mass spectrometry, Rapid Commun. Mass Spectrom. 20 (2006).

DOI: 10.1002/rcm.2591

Google Scholar

[17] A. C. Schmidt, B. Niehus, F. M. Matysik, W. Engewald, Identification and Quantification of Polar Nitroaromatic Compounds in Explosive-Contaminated Waters by means of HPLC-ESI-MS-MS and HPLC-UV, Chromatographia 63 (2006) 1-11.

DOI: 10.1365/s10337-005-0703-8

Google Scholar

[18] A. Bakdash, M. Ganswindt, S. Herre, T. Nadulski and F. Pragst, Lethal Poisoning with p-Nitroaniline, T + K 73 (2006) 61- 65.

Google Scholar

[19] S. Gautam, S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation, Chem. Eng. J. 110 (2005) 129-137.

DOI: 10.1016/j.cej.2005.03.021

Google Scholar

[20] H. Maa, M. Wanga, C. Pua, J. Zhanga, S. Zhaoa, S. Yaoa, J. Xiong, Transient and steady-state photolysis of p-nitroaniline in aqueous solution, J. Hazard. Mater. 165 (2009) 867-873.

Google Scholar

[21] J. Yu, J. C. Yu, M. K-P. Leung, W. Ho, B. Cheng, X. Zhao, J. Zhao, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, J. Cata. 217 (2003) 69-78.

DOI: 10.1016/s0021-9517(03)00034-4

Google Scholar

[22] J.G. Yu, J. F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B. 60 (2005) 211-221.

DOI: 10.1016/j.apcatb.2005.03.009

Google Scholar

[23] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, third ed., Prentice Hall Inc. Upper Saddle River, NJ. (2001).

Google Scholar

[24] S. J. Gregg, K. S. W. Sing, Adsorption, In Surface Area and Porosity, Academic Press, New York (1982).

Google Scholar

[25] R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.

DOI: 10.1021/ie051060m

Google Scholar

[26] R. J. Tayade, R. G. Kulkarni, R.V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[27] M. Niederberger, M. H. Bartl, G. D. Stucky, Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles,  Chem. Mater. 14 (2002).

DOI: 10.1021/cm021203k

Google Scholar

[28] K. S. W. Sing, D. H. Everett, R. A.W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting Physisorption Data For Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem. 57 (1985).

DOI: 10.1515/iupac.57.0013

Google Scholar

[29] T. Benzrondna, G. Puchkovska, V. Shyamanovska, J. Baran, H. Ratajczak, IR-analysis of h-bonded H2O on the pure TiO2 surface, J. Mol. Stru. 700 (2004) 175-181.

DOI: 10.1016/j.molstruc.2003.12.057

Google Scholar

[30] V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin, B. C. Muddle, Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2,  Phys. Rev.B. 71(18) (2005) 1-11.

DOI: 10.1103/physrevb.71.184302

Google Scholar

[31] J. Zhu, J. Zhang, F. Chen , K. Iino, M. Anpo, High activity TiO2 photocatalysts prepared by a modified sol-gel method: Characterization and their photocatalytic activity for the degradation of XRG and X-GL, Topics in Catalysis. 35 (2005) 261-268.

DOI: 10.1007/s11244-005-3833-1

Google Scholar

[32] J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao, Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment,  J. Mol. Cat. A. Chem. 253 (2006) 112-118.

DOI: 10.1016/j.molcata.2006.03.021

Google Scholar

[33] B. Ohtani, S. Ogawa, S. -I. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions, J. Phys. Chem. B. 101 (1997) 3746-3752.

DOI: 10.1021/jp962702+

Google Scholar

[34] D. S. Bhatkhande, V. G. Pangarkar, A. A. Beenackers, Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup,  Water Research 37 (2003) 1223-1230.

DOI: 10.1016/s0043-1354(02)00490-6

Google Scholar

[35] J. C. Yu, J. Yu, W. Ho, L. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun. 19 (2001) 1942-(1943).

DOI: 10.1039/b105471f

Google Scholar

[36] J. C. Yu, J. Yu, L. Zhang, W. Ho, Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders,  J. Photochem. Photobiol. A. 148 (2002) 263-271.

DOI: 10.1016/s1010-6030(02)00052-7

Google Scholar

[37] K. H. Wang, Y. H. Hsieh, C. H. Wu, C. Y. Chang, The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension, Chemosphere 40 (2000) 389-394.

DOI: 10.1016/s0045-6535(99)00252-0

Google Scholar

[38] C. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, J. Photo. Chem. Photo. Biol. A. 163 (2004) 281-287.

DOI: 10.1016/j.jphotochem.2003.12.012

Google Scholar