[1]
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature (London) 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891-2959.
DOI: 10.1021/cr0500535
Google Scholar
[3]
A.L. Pruden, D.F. Ollis, Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, J. Catal. 82 (1983) 404-417.
DOI: 10.1016/0021-9517(83)90207-5
Google Scholar
[4]
C. Y. Hsiao, C. L. Lee, D. F. Ollis, Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst, J. Catal. 82 (1983) 418-423.
DOI: 10.1016/0021-9517(83)90208-7
Google Scholar
[5]
A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A. 108 (1997) 1-35.
Google Scholar
[6]
D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res. 1 (1999) 439-458.
Google Scholar
[7]
Y. Bessekhouad, D. Robert, J. V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: Optimization of the preparation conditions, J. Photochem. Photobiol. A Chem. 157 (2003) 47-53.
DOI: 10.1016/s1010-6030(03)00077-7
Google Scholar
[8]
K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano TiO2, Appl. Catal. B. 48 (2004) 83-93.
DOI: 10.1016/j.apcatb.2003.09.013
Google Scholar
[9]
K. D. Kim, H. T. Kim, Synthesis of titanium dioxide nanoparticles using a continuous reaction method, Colloids and Surfaces A: Physicochem. Eng. Aspects 207 (2002) 263-269.
DOI: 10.1016/s0927-7757(02)00140-1
Google Scholar
[10]
Y. Li, T.J. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles, J. Solid State Chem. 177 (2004) 1372-1381.
DOI: 10.1016/j.jssc.2003.11.016
Google Scholar
[11]
L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Mater. Res. Bull. 36 (2001) 811-825.
DOI: 10.1016/s0025-5408(00)00482-7
Google Scholar
[12]
D. Vorkapic, T. J. Matsoukas, Reversible agglomeration: A kinetic model for the peptization of titania nanocolloids, Colloid Interface Sci. 214 (1999) 283-291.
DOI: 10.1006/jcis.1999.6218
Google Scholar
[13]
G. Sivalingam, K. Nagaveni, M. S. Hegde, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Appl. Catal. B. 45 (2003) 23-38.
DOI: 10.1016/s0926-3373(03)00124-3
Google Scholar
[14]
K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, Photocatalytic Degradation of Organic Compounds over Combustion-Synthesized Nano-TiO2, Environ. Sci. Technol. 38 (2004)1600-1604.
DOI: 10.1021/es034696i
Google Scholar
[15]
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for nitrobenzene; U.S. Department of Health and Human Services: Atlanta, GA, 1990. Public Health Service website: http: / www. atsdr. cdc. gov/taxfaq. html.
DOI: 10.4135/9781412963855.n24
Google Scholar
[16]
A. C. Schmidt, R. Herzschuh, F. M. Matysik, W. Engewald, Investigation of the ionisation and fragmentation behaviour of different nitroaromatic compounds occurring as polar metabolites of explosives using electrospray ionisation tandem mass spectrometry, Rapid Commun. Mass Spectrom. 20 (2006).
DOI: 10.1002/rcm.2591
Google Scholar
[17]
A. C. Schmidt, B. Niehus, F. M. Matysik, W. Engewald, Identification and Quantification of Polar Nitroaromatic Compounds in Explosive-Contaminated Waters by means of HPLC-ESI-MS-MS and HPLC-UV, Chromatographia 63 (2006) 1-11.
DOI: 10.1365/s10337-005-0703-8
Google Scholar
[18]
A. Bakdash, M. Ganswindt, S. Herre, T. Nadulski and F. Pragst, Lethal Poisoning with p-Nitroaniline, T + K 73 (2006) 61- 65.
Google Scholar
[19]
S. Gautam, S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation, Chem. Eng. J. 110 (2005) 129-137.
DOI: 10.1016/j.cej.2005.03.021
Google Scholar
[20]
H. Maa, M. Wanga, C. Pua, J. Zhanga, S. Zhaoa, S. Yaoa, J. Xiong, Transient and steady-state photolysis of p-nitroaniline in aqueous solution, J. Hazard. Mater. 165 (2009) 867-873.
Google Scholar
[21]
J. Yu, J. C. Yu, M. K-P. Leung, W. Ho, B. Cheng, X. Zhao, J. Zhao, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, J. Cata. 217 (2003) 69-78.
DOI: 10.1016/s0021-9517(03)00034-4
Google Scholar
[22]
J.G. Yu, J. F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B. 60 (2005) 211-221.
DOI: 10.1016/j.apcatb.2005.03.009
Google Scholar
[23]
B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, third ed., Prentice Hall Inc. Upper Saddle River, NJ. (2001).
Google Scholar
[24]
S. J. Gregg, K. S. W. Sing, Adsorption, In Surface Area and Porosity, Academic Press, New York (1982).
Google Scholar
[25]
R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.
DOI: 10.1021/ie051060m
Google Scholar
[26]
R. J. Tayade, R. G. Kulkarni, R.V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.
DOI: 10.1021/ie051362o
Google Scholar
[27]
M. Niederberger, M. H. Bartl, G. D. Stucky, Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles, Chem. Mater. 14 (2002).
DOI: 10.1021/cm021203k
Google Scholar
[28]
K. S. W. Sing, D. H. Everett, R. A.W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting Physisorption Data For Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem. 57 (1985).
DOI: 10.1515/iupac.57.0013
Google Scholar
[29]
T. Benzrondna, G. Puchkovska, V. Shyamanovska, J. Baran, H. Ratajczak, IR-analysis of h-bonded H2O on the pure TiO2 surface, J. Mol. Stru. 700 (2004) 175-181.
DOI: 10.1016/j.molstruc.2003.12.057
Google Scholar
[30]
V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin, B. C. Muddle, Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2, Phys. Rev.B. 71(18) (2005) 1-11.
DOI: 10.1103/physrevb.71.184302
Google Scholar
[31]
J. Zhu, J. Zhang, F. Chen , K. Iino, M. Anpo, High activity TiO2 photocatalysts prepared by a modified sol-gel method: Characterization and their photocatalytic activity for the degradation of XRG and X-GL, Topics in Catalysis. 35 (2005) 261-268.
DOI: 10.1007/s11244-005-3833-1
Google Scholar
[32]
J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao, Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment, J. Mol. Cat. A. Chem. 253 (2006) 112-118.
DOI: 10.1016/j.molcata.2006.03.021
Google Scholar
[33]
B. Ohtani, S. Ogawa, S. -I. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions, J. Phys. Chem. B. 101 (1997) 3746-3752.
DOI: 10.1021/jp962702+
Google Scholar
[34]
D. S. Bhatkhande, V. G. Pangarkar, A. A. Beenackers, Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup, Water Research 37 (2003) 1223-1230.
DOI: 10.1016/s0043-1354(02)00490-6
Google Scholar
[35]
J. C. Yu, J. Yu, W. Ho, L. Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun. 19 (2001) 1942-(1943).
DOI: 10.1039/b105471f
Google Scholar
[36]
J. C. Yu, J. Yu, L. Zhang, W. Ho, Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders, J. Photochem. Photobiol. A. 148 (2002) 263-271.
DOI: 10.1016/s1010-6030(02)00052-7
Google Scholar
[37]
K. H. Wang, Y. H. Hsieh, C. H. Wu, C. Y. Chang, The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension, Chemosphere 40 (2000) 389-394.
DOI: 10.1016/s0045-6535(99)00252-0
Google Scholar
[38]
C. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, J. Photo. Chem. Photo. Biol. A. 163 (2004) 281-287.
DOI: 10.1016/j.jphotochem.2003.12.012
Google Scholar