Structural and Thermal Properties of ACNT by Modified Deposition Method: Growth Time Approach

Article Preview

Abstract:

The knowledge of fabrication method plays an important role in the preparation of aligned carbon nanotubes (ACNT) from natural hydrocarbon feedstock. Here ACNT were successfully synthesized by two-stage catalytic chemical vapor deposition method using organic oil (camphor oil) as a precursor. Synthesis was carried out at a fixed growth temperature of 800 °C and in different growth time: 10, 20, 30, 40, 50 and 60 minutes. The optimized condition for the growth of ACNT produced a small amount of by-product amorphous carbon and highly uniform crystal structure. The experimental results demonstrated that formation ACNT is also dependent on the growth time. The nanotubes were characterized by field emission scanning electron microscopy and micro-Raman spectroscopy. Thermal properties were evaluated by thermogravimetric analysis.

You have full access to the following eBook

Info:

[1] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.

DOI: 10.1038/363603a0

Google Scholar

[2] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon, Nature 347 (1990) 354-358.

DOI: 10.1038/347354a0

Google Scholar

[3] Rahul Sen, S. Suzuki, H. Kataura, Y. Achiba, Growth of single-walled carbon nanotubes from the condensed phase, Chem. Phy. Lett. 349 (2001) 383-388.

DOI: 10.1016/s0009-2614(01)01208-8

Google Scholar

[4] L. Philip, Jr. Walker, Carbon: An old but new material revisited, Carbon 28 (1990) 261-279.

Google Scholar

[5] Y. Ando, X. Zhao, T. Sugai, M. Kumar, Growing carbon nanotubes, Mater. Today 7 (2004) 22-29.

Google Scholar

[6] M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor-a botanical hydrocarbon, Diamond Relat. Mater. 12 (2003) 1845-1850.

DOI: 10.1016/s0925-9635(03)00217-6

Google Scholar

[7] J. Tang, G. -Q. Jin, Y. -Y. Wang, X. -Y. Guo, Tree-like carbon grown from camphor, Carbon 48 (2010) 1545-1551.

DOI: 10.1016/j.carbon.2009.12.051

Google Scholar

[8] M. Mikami, K. Yamagiwa, T. Takeuchi, M. Saito, J. Kuwano, Synthesis of highly aligned carbon nanotubes in liquid phase, Key Eng. Mater. 350 (2007) 23-26.

DOI: 10.4028/www.scientific.net/kem.350.23

Google Scholar

[9] S. Wijewardane, Potential applicability of CNT and CNT/composites to implement ASEC concept: A review article, Solar Energy 83 (2009) 1379-1389.

DOI: 10.1016/j.solener.2009.03.001

Google Scholar

[10] P. Szroeder, N.G. Tsierkezos, P. Scharff, U. Ritter, Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers, Carbon 48 (2010) 4489-4496.

DOI: 10.1016/j.carbon.2010.08.009

Google Scholar

[11] M.S. Shamsudin, S. Abdullah, M. Rusop, Structural and thermal behaviors of iron-filled align carbon nanotubes formulated by two-stage catalytic chemical vapor deposition, Adv. Mater. Res. 364 (2012) 191-195.

DOI: 10.4028/www.scientific.net/amr.364.191

Google Scholar

[12] M.S. shamsudin, M.F. Achoi, M.N. Asiah, L.N. Ismail, A.B. Suriani, S. Abdullah, S.Y.S. Yahya, M. Rusop, An investigation on the formation of carbon nanotubes by two-stage chemical vapor deposition, Journal of Nanomaterials Vol. 2012 Art. ID 972126. doi: 10. 1155/2012/972126.

DOI: 10.1155/2012/972126

Google Scholar

[13] M. Kusunoki, T Suzuki, T Hirayama, N Shibata, Aligned carbon nanotube films on SiC (0 0 0 1) wafers, Physica B: Condensed Matter 323 (2002) 296-298.

DOI: 10.1016/s0921-4526(02)01027-x

Google Scholar

[14] H. Ma, L. Pan, Y. Nakayama, Modelling the growth of carbon nanotubes produced by chemical vapor deposition, Carbon 49 (2011) 854-861.

DOI: 10.1016/j.carbon.2010.10.029

Google Scholar

[15] A.B. Suriani, A.A. Azira, S.F. Nik, R. Md Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[16] J. Dijon, P.D. Szkutnik, A. Fourier, T. Goislard de Monsabert, H. Okuno, E. Quesnel, V. Muffato, E. De Vito, N. Bendiab A, Bogner, N. Bernier, How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition, Carbon 48 (2010).

DOI: 10.1016/j.carbon.2010.06.064

Google Scholar

[17] P. Liu, L. Liu, Y. Zhang, Alignment characterization of single-wall carbon nanotubes by Raman scattering, Physics Letters A 313 (2003) 302-306.

DOI: 10.1016/s0375-9601(03)00764-3

Google Scholar

[18] Y. Zhao, T. Sugai, H. Shinohara, Y. Saito, Controlling growth and Raman spectra of individual suspended single-walled carbon nanotubes, J. Phys. Chem. Solids 68 (2007) 284-289.

DOI: 10.1016/j.jpcs.2006.11.012

Google Scholar

[19] H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260 (1996) 471-475.

DOI: 10.1016/0009-2614(96)00862-7

Google Scholar

[20] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306 (2004) 1362-1364.

DOI: 10.1126/science.1104962

Google Scholar

[21] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. l Phys. Lett. 385 (2004) 298-303.

DOI: 10.1016/j.cplett.2003.12.095

Google Scholar

[22] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360 (2002) 229-234.

DOI: 10.1016/s0009-2614(02)00838-2

Google Scholar

[23] X. Zhao, Y. Ando, L. -C. Qin, H. Kataura, Y. Maniwa, R. Saito, Multiple splitting of G-band modes from individual multiwalled carbon nanotubes, Appl. Phys. Lett. 81 (2002) 2550-2552.

DOI: 10.1063/1.1502196

Google Scholar

[24] R. Xiang, G. Luo, Z. Yang, Q. Zhang, W. Qian, F. Wei, Large area growth of aligned CNT arrays on spheres: Cost performance and product control, Mater. Lett. 63 (2009) 84-87.

DOI: 10.1016/j.matlet.2008.09.015

Google Scholar

[25] U. Ritter, P. Scharff, O.P. Dmytrenko, N.P. Kulish, Yu.I. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.A. Komarova, S.V. Lizunova, V.V. Shlapatskaya, H. Bernas, Radiation damage and Raman vibrational modes of single-walled carbon nanotubes, Chem. Phys. Lett. 447 (2007).

DOI: 10.1016/j.cplett.2007.09.010

Google Scholar

[26] B. Duong, S. Seraphin, L. Wang, Y. Peng, H. Xin, Production of predominantly semiconducting double-walled carbon nanotubes, Carbon 49 (2011) 3512-3521.

DOI: 10.1016/j.carbon.2011.04.050

Google Scholar

[27] R. Jasti, C.R. Bertozzi, Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality, Chem. Phys. Lett. 494 (2010) 1-7.

DOI: 10.1016/j.cplett.2010.04.067

Google Scholar

[28] R. Rao, J. Reppert, R. Podila, X. Zhang, A.M. Rao, S. Talapatra, B. Maruyama, Double resonance Raman study of disorder in CVD-grown single-walled carbon nanotubes, Carbon 49 (2011) 1318-1325.

DOI: 10.1016/j.carbon.2010.11.052

Google Scholar

[29] S. Paul. S.K. Samdarshi, Carbon microtubes produced from coconut oil, New Carbon Materials 25 (2010) 321-324.

DOI: 10.1016/s1872-5805(09)60036-6

Google Scholar

[30] S. Paul, S.K. Samdarshi, A green precursor for carbon nanotubes synthesis, New Carbon Materials 26 (2011) 85-88.

DOI: 10.1016/s1872-5805(11)60068-1

Google Scholar

[31] M. Rusop, T. Kinugawa, T. Soga, T. Jimbo, Preparation and microstructure properties of tetrahedral amorphous carbon films by pulsed laser deposition using camphoric carbon target, Diamond Relat. Mater. 13 (2004) 2174-2179.

DOI: 10.1016/j.diamond.2004.06.035

Google Scholar

[32] M. Kumar, K. Kakamu, T. Okazaki, Y. Ando, Field emission from camphor-pyrolyzed carbon nanotubes, Chem. Phys. Lett. 385 (2004) 161-165.

DOI: 10.1016/j.cplett.2003.12.064

Google Scholar

[33] J. Madarász, G. Pokol, S. Kéki, M.T. Beck, Comparative thermogravimetric study of the oxidation of different carbons, Carbon 32 (1994) 1023-1024.

DOI: 10.1016/0008-6223(94)90064-7

Google Scholar

[34] B.P. Ramesh, W.J. Blau, P.K. Tyagi, D.S. Misra, N. Ali, J. Gracio, G. Cabral, E. Titus, Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition, Thin Solid Films 494 (2006) 128-132.

DOI: 10.1016/j.tsf.2005.08.220

Google Scholar

[35] P. Moodley, J. Loos, J.W. Niemantsverdriet, P.C. Thüne, Is there a correlation between catalyst particle size and CNT diameter?, Carbon 47 (2009) 2002-(2013).

DOI: 10.1016/j.carbon.2009.03.046

Google Scholar