[1]
M. Li, X. Xiao, R. Liu, C. Chen, L. Huang, Structural characterization of zinc-substituted hydroxyapatite prepared byhydrothermal method, J. Mater. Sci. Mater. Med. 19 (2008) 797-803.
DOI: 10.1007/s10856-007-3213-4
Google Scholar
[2]
S. Bose, K.S. Saha, Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique, Chem. Mater. 15 (2003) 4464-4469.
DOI: 10.1021/cm0303437
Google Scholar
[3]
Y. Ding, J. Liu, H. Wang, G. Shen, R. Yu, A piezoelectric immunosensor for the detection of α-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial, Biomaterials 28 (2007) 2147-2154.
DOI: 10.1016/j.biomaterials.2006.12.025
Google Scholar
[4]
H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biocompatibility and osteogenesis of biomimetic nanohydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials 28 (2007) 3338-3348.
DOI: 10.1016/j.biomaterials.2007.04.014
Google Scholar
[5]
V.S. Komlev, S.M. Barinov, F. Rustichelli, Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation, J. Mater. Sci. Lett. 22 (2003)1215-1217.
Google Scholar
[6]
N. Meenakshi Sundaram, E.K. Girija, M. Ashok, T.K. Anee, R. Vani, R. Suganthi, Crystallisation of hydroxyapatite nanocrystals under magnetic field, Mater. Lett. 60 (2006) 761-765.
DOI: 10.1016/j.matlet.2005.10.034
Google Scholar
[7]
V. Rajendran, A. Nishara Begum, M.A. Azooz, F.H. EI Bata, Microstructural dependence on relevant physical–mechanical properties on SiO2–Na2O–CaO–P2O5 biological glasses, Biomaterials 23 (2002) 4263-4275.
DOI: 10.1016/s0142-9612(02)00189-8
Google Scholar
[8]
E.S. Ahn, N.J. Gleason, A. Nakahira, J.Y. Ying, Nanostructure processing of hydroxyapatite-based bioceramics, Nano Lett. 1(3) (2001) 149-153.
DOI: 10.1021/nl0055299
Google Scholar
[9]
M. K. Singh, T. Shokuhfar, J. J.D. Almeida Gracio, A. C. M. D. Sousa, J. M. D. F. Fereira, H. Garmestani, S. Ahzi, Hydroxyapatite modified with carbon-nanotube-reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications, Adv. Funct. Mater. 18 (2008).
DOI: 10.1002/adfm.200700888
Google Scholar
[10]
R. Joseph, K.E. Tanner, Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites, Biomacromolecules 6 (2005) 1021-1026.
DOI: 10.1021/bm0493180
Google Scholar
[11]
J.M. Yang, C.S. Lu, Y.G. Hsu, C.H. Shih, Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid solgel material, J. Biomed. Mater. Res. 38 (1997) 143-154.
DOI: 10.1002/(sici)1097-4636(199722)38:2<143::aid-jbm9>3.0.co;2-q
Google Scholar
[12]
N. Pramanik, P. Bhargava, S. Alam, P. Pramanik , Processing and properties of nano-and macro-hydroxyapatite/poly (ethyleneco-acrylic acid) composites, Polym. Compos. 27 (2006) 633-641.
DOI: 10.1002/pc.20246
Google Scholar
[13]
M. Boissie`re, P.J. Meadows, R. Brayner, C. Helary, J. Livage, T. Coradin , Turning biopolymer particles into hybrid capsules: the example of silica/alginate nanocomposites, J. Mater. Chem. 16 (2006) 1178-1182.
DOI: 10.1039/b515797h
Google Scholar
[14]
K. Kawagoe, M. Saito, T. Shibuya, T. Nakashima, K. Hino, H. Yoshikawa, Augmentation of cancellous screw fixation with hydroxyapatite composite resin (CAP) in vivo, J. Biomed. Mater. Res. 53 (2000) 678-684.
DOI: 10.1002/1097-4636(2000)53:6<678::aid-jbm10>3.0.co;2-e
Google Scholar
[15]
J. Li, Y. Zuo, X. Cheng, W. Yang, H. Wang, Y. Li, Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure, J. Mater. Sci, Mater. Med. 20 (2009) 1031-1038.
DOI: 10.1007/s10856-008-3664-2
Google Scholar
[16]
M. Darder, M. Lo´pez-Blanco, P. Aranda, A. J. Aznar, J. Bravo, E. Ruiz-Hitzky, Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure, Chem. Mater. 18 (2006) 1602-1610.
DOI: 10.1021/cm0523642
Google Scholar
[17]
Y. Zhang, J. L. A. Mild, Efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent, Cryst. Growth Des. 8 (2008) 2101-2107.
DOI: 10.1021/cg060880e
Google Scholar
[18]
D.Z. Chen, C.Y. Tang, K.C. Chan, C.P. Tsui, P.H.F. Yu, M.C.P. Leung, P.S. Uskokovic, Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite, Compos. Sci. Technol, 67 (2007) 1617-1626.
DOI: 10.1016/j.compscitech.2006.07.034
Google Scholar
[19]
F.E. Wiria, C.K. Chua, K.F. Leong, Z.Y. Quah, M. Chandrasekaran, M.W. Lee, . Improved biocomposite development of poly (vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering, J. Mater. Sci: Mater. Med. 19 (2008).
DOI: 10.1007/s10856-007-3176-5
Google Scholar
[20]
Y. Pan, D. Xiong, Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage, Wear 266 (2009) 699-703.
DOI: 10.1016/j.wear.2008.08.012
Google Scholar
[21]
M. Wang, Y. Li, J. Wu, F. Xu, Y. Zuo, J.A. Jansen, In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite, J. Biomed. Mater. Res. Part A 85 (2008) 418-426.
DOI: 10.1002/jbm.a.31585
Google Scholar
[22]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials, 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[23]
C.W. Chen, C.S. Oakes, K. Byrappa, R.E. Riman, K. Brown, K.S. TenHuisen, V.F. Janas, Synthesis, characterization, and dispersion properties of hydroxyapatite prepared by mechanochemical–hydrothermal methods, J. Mater. Chem. 14 (2004) 2425-2432.
DOI: 10.1039/b315095j
Google Scholar
[24]
S. Kannan, A.F. Lemos, Synthesis and mechanical performance of biological-like hydroxyapatite, Chem Mater. 18 (2006) 2181-2186.
Google Scholar
[25]
N. Degirmenbasi, D. M. Kalyon, E. Birinci, Biocomposites of nanohydroxyapatite with collagen and poly (vinyl alcohol), Colloids Surf. B: Biointer. 48 (2006) 42-49.
DOI: 10.1016/j.colsurfb.2006.01.002
Google Scholar
[26]
A. Lak, M. Mazloumi, M. Mohajerani, A. Kajbafvala, S. Zanganeh, H. Arami, S.K. Sadrnezhaad, Self-assembly of dandelionlike hydroxyapatite nanostructures via hydrothermal method, J. Am. Ceram. Soc. 91 (2008) 3292-3297.
DOI: 10.1111/j.1551-2916.2008.02600.x
Google Scholar
[27]
L. Yanbao, L. Dongxu, W. Weng, Preparation of nano carbonate-substituted hydroxyapatite from an amorphous precursor, Int.J. Appl. Ceram. Technol. 5 (2008) 442-448.
Google Scholar
[28]
M.G. Ma, Y. J. Zhu, J. Chang, Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite, J. Phys. Chem. B. 110 (2006) 14226-14230.
DOI: 10.1021/jp061738r
Google Scholar
[29]
W. Zhang, S.S. Liao, F.Z. Cui, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chem. Mater, Chem. Mater. 15 (2003) 3221-3226.
DOI: 10.1021/cm030080g
Google Scholar
[30]
L. Bertinetti, A. Tampieri, E. Landi, C. Ducati, P.A. Midgley, S. Coluccia, G. Martra, Surface structure, hydration and cationic sites of nanohydroxyapatite: UHR-TEM, IR, Microgravimetric studies, J. Phys. Chem. C. 111 (2007) 4027-4035.
DOI: 10.1021/jp066040s
Google Scholar
[31]
D. Choi, P.N. Kumta, An alternative chemical route for the synthesis and thermal stability of chemically enriched hydroxyapatite, J. Am. Ceram. Soc. 89 (2006) 444-449.
DOI: 10.1111/j.1551-2916.2005.00738.x
Google Scholar
[32]
I.S. Neira, Y.V. Kolen'ko, O.I. Lebedev, G.V. Tendeloo, H.S. Gupta, F. Guitian, M. Yoshimura, An effective Morphology control of hydroxyapatite crystals via hydrothermal synthesis, Cryst. Growth Des, 9 (2009) 466-474.
DOI: 10.1021/cg800738a
Google Scholar
[33]
S. Kannan, J.M.F. Ferreira, Synthesis and thermal stability of hydroxyapatite-β- tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine, Chem. Mater. 18 (2006) 198-203.
DOI: 10.1021/cm051966i
Google Scholar
[34]
F. Huang, Y. Shen, A. Xie, J. Zhu, C. Zhang, S. Li, J. Zhu, Study on synthesis and properties of hydroxyapatite nanorods and its complex containing biopolymer, J. Mater. Sci. 42 (2007) 8599 -8605.
DOI: 10.1007/s10853-007-1861-x
Google Scholar
[35]
R. Murugan, S. Ramakrishna, Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite, Biomaterials 25 (2004) 3829-3835.
DOI: 10.1016/j.biomaterials.2003.10.016
Google Scholar
[36]
N. Pramanik, S. Mohapatra, S. Alam, P. Pramanik, Synthesis of hydroxyapatite/poly(vinyl alcohol phosphate) nanocomposite and its characterisation, Polym. Compos. 29 (2008) 429-436.
DOI: 10.1002/pc.20410
Google Scholar
[37]
J. Zhan Y.H. Tseng, C.C. Jerry, Chan, C.Y. Mou, Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation, Adv. Funct. Mater. 15 (2005) 2005-(2010).
DOI: 10.1002/adfm.200500274
Google Scholar
[38]
R. Gandhidasan, A. Thamaraichelvan, S. Baburaj, Anti inflammatory action of Lannea coromandelica by HRBC membrane stabilization, Fitoterapia, LXII. 1(1991) 81-83.
Google Scholar