Fabrication of p-Type Double Gate and Single Gate Junctionless Silicon Nanowire Transistor by Atomic Force Microscopy Nanolithography

Article Preview

Abstract:

In this work, we have investigated the fabrication of Double gate and Single gate Junctionless silicon nanowire transistor using silicon nanowire patterned on lightly doped (105 cm-3) p-type Silicon on insulator wafer fabricated by Atomic force microscopy nanolithography technique. Local anodic oxidation followed by two wet etching steps, Potassium hydroxide etching for Silicon removal and Hydrofluoric acid etching for oxide removal, were implemented to reach the structures. Writing speed and applied tip voltage were held in 0.6 µm/s and 8 volt respectively for Cr/Pt tip. Scan speed was held in 1.0 µm/s. The etching processes were elaborately performed and optimized by 30%wt. Potassium hydroxide + 10%vol. Isopropyl alcohol in appropriate time, temperature and humidity. The structure is a gated resistor turned off based on a pinch-off effect principle, when essential positive gate voltage is applied. Negative gate voltage was unable to make significant effect on drain current to drive the device into accumulation mode.

You have full access to the following eBook

Info:

[1] H.G. Virani, S. Gundapaneni, A. Kottantharayil, Double Dielectric Spacer for the Enhancement of Silicon p-Channel Tunnel Field Effect Transistor Performance, Jpn. J. Appl. Phys, 50 (2011) 04DC04.

DOI: 10.7567/jjap.50.04dc04

Google Scholar

[2] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High- /metal-gate stack and its MOSFET characteristics, IEEE Electron Device Lett, 25 (2004) 408-410.

DOI: 10.1109/led.2004.828570

Google Scholar

[3] G. Lansbergen, R. Rahman, C. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. Hollenberg, S. Rogge, Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET, Nat. Phys, 4 (2008) 656-661.

DOI: 10.1038/nphys994

Google Scholar

[4] B. Yang, K. Buddharaju, S. Teo, N. Singh, G. Lo, D. Kwong, Vertical silicon-nanowire formation and gate-all-around MOSFET, IEEE Electron Device Lett., 29 (2008) 791-794.

DOI: 10.1109/led.2008.2000617

Google Scholar

[5] J. Colinge, C. Lee, A. Afzalian, N. Dehdashti, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, SOI gated resistor: CMOS without junctions, IEEE 2009, pp.1-2.

DOI: 10.1109/soi.2009.5318737

Google Scholar

[6] J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, Nanowire transistors without junctions, Nat Nanotechnol, 5 (2010) 225-229.

DOI: 10.1038/nnano.2010.15

Google Scholar

[7] P. Campbell, E. Snow, P. McMarr, Fabrication of nanometer scale side gated silicon field effect transistors with an atomic force microscope, Appl. Phys. Lett, 66 (1995) 1388.

DOI: 10.1063/1.113210

Google Scholar

[8] E. Snow, P. Campbell, P. McMarr, Fabrication of silicon nanostructures with a scanning tunneling microscope, Appl. Phys. Lett, 63 (1993) 749-751.

DOI: 10.1063/1.109924

Google Scholar

[9] I. Ionica, L. Montes, S. Ferraton, J. Zimmermann, L. Saminadayar, V. Bouchiat, Field effect and Coulomb blockade in silicon on insulator nanostructures fabricated by atomic force microscope, Solid-State Electron, 49 (2005) 1497-1503.

DOI: 10.1016/j.sse.2005.07.012

Google Scholar

[10] G. Pennelli, Top down fabrication of long silicon nanowire devices by means of lateral oxidation, Microelectron. Eng, 86 (2009) 2139-2143.

DOI: 10.1016/j.mee.2009.02.032

Google Scholar

[11] J. Martinez, R.V. Martínez, R. Garcia, Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography, Nano Lett, 8 (2008) 3636-3639.

DOI: 10.1021/nl801599k

Google Scholar

[12] I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process, Sensors and Actuators A: Physical, 87 (2001) 163-171.

DOI: 10.1016/s0924-4247(00)00481-7

Google Scholar

[13] G. Pennelli, M. Piotto, G. Barillaro, Silicon single-electron transistor fabricated by anisotropic etch and oxidation, Microelectron. Eng, 83 (2006) 1710-1713.

DOI: 10.1016/j.mee.2006.01.144

Google Scholar

[14] A. Dehzangi, A.M. Abdullah, F. Larki, S.D. Hutagalung, E.B. Saion, M.M.N. Hamidon, J. Hassan, Y. Gharayebi, Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography, Nanoscale Res. Lett., 7 (2012).

DOI: 10.1186/1556-276x-7-381

Google Scholar

[15] F. Larki, S.D. Hutagalung, A. Dehzangi, E.B. Saion, A. Abedini, A.A. Makarimi, M.N. Hamidon, J. Hassan, Electronic Transport Properties of Junctionless Lateral Gate Silicon Nanowire Transistor Fabricated by Atomic Force Microscope Nanolithography, Microelectron and Solid State Electron, 1 (2012).

DOI: 10.4028/www.scientific.net/nh.4.33

Google Scholar

[16] A. Dehzangi, F. Larki, E. Saion, S.D. Hutagalung, M. Hamidon, J. Hassan, Field effect in silicon nanostructure fabricated by Atomic Force Microscopy nano lithography, IEEE Regional Symposium on Micro and Nanoelectronics (RSM), IEEE Xplore Digital Library, Kota Kinabalu, 2011, pp.104-107.

DOI: 10.1109/rsm.2011.6088302

Google Scholar

[17] A. Nazarov, J. Colinge, F. Balestra, J.P. Raskin, F. Gamiz, V. Lysenko, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Springer Verlag2011.

DOI: 10.1007/978-3-642-15868-1

Google Scholar

[18] W. Kern, D.A. Puotinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA rev, 31 (1970) 187-206.

Google Scholar

[19] T.H. Fang, Mechanisms of nanooxidation of Si (100) from atomic force microscopy, Microelectron. J, 35 (2004) 701-707.

DOI: 10.1016/j.mejo.2004.06.022

Google Scholar

[20] K. Morimoto, F. Pérez-Murano, J. Dagata, Density variations in scanned probe oxidation, Appl. Surf. Sci, 158 (2000) 205-216.

DOI: 10.1016/s0169-4332(00)00017-9

Google Scholar

[21] H. Kuramochi, K. Ando, H. Yokoyama, Effect of humidity on nano-oxidation of p-Si (001) surface, Surf. Sci, 542 (2003) 56-63.

DOI: 10.1016/s0039-6028(03)00912-9

Google Scholar

[22] D. Ricci, P.C. Braga, Recognizing and avoiding artifacts in AFM imaging, Methods In Molecular Biology-Clifton Then Totowa-, 242 (2004) 25-38.

DOI: 10.1385/1-59259-647-9:25

Google Scholar

[23] S. Youn, C. Kang, Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (1 0 0) surface, Wear, 261 (2006) 328-337.

DOI: 10.1016/j.wear.2005.11.007

Google Scholar

[24] S.A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S.N. Port, D.J. Schiffrin, Inhibition of pyramid formation in the etching of Si p (100) in aqueous potassium hydroxide-isopropanol. Journal of Micromechanics and Microengineering, 5(3), (1999) 209.

DOI: 10.1088/0960-1317/5/3/002

Google Scholar

[25] H.G.G. Philipsen, J.J. Kelly, Influence of chemical additives on the surface reactivity of Si in KOH solution, Electrochim. Acta, 54 (2009) 3526-3531.

DOI: 10.1016/j.electacta.2008.12.044

Google Scholar

[26] M. Yun, Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material, J. Korean Phys. Soc, 37 (2000) 605-610.

DOI: 10.3938/jkps.37.605

Google Scholar

[27] I. Zubel, M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sensors and Actuators A: Physical, 93 (2001) 138-147.

DOI: 10.1016/s0924-4247(01)00648-3

Google Scholar

[28] C.R. Yang, P.Y. Chen, C.H. Yang, Y.C. Chiou, R.T. Lee, Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions, Sensors and Actuators A: Physical, 119 (2005) 271-281.

DOI: 10.1016/j.sna.2004.09.017

Google Scholar

[29] H. Camon, Z. Moktadir, Simulation of silicon etching with KOH, Microelectron. J, 28 (1997) 509-517.

DOI: 10.1016/s0026-2692(96)00067-5

Google Scholar

[30] W. Haiss, P. Raisch, L. Bitsch, R.J. Nichols, X. Xia, J.J. Kelly, D.J. Schiffrin, Surface termination and hydrogen bubble adhesion on Si (1 0 0) surfaces during anisotropic dissolution in aqueous KOH, J. Electroanal. Chem, 597 (2006) 1-12.

DOI: 10.1016/j.jelechem.2006.07.027

Google Scholar

[31] K. Biswas, S. Das, S. Kal, Analysis and prevention of convex corner undercutting in bulk micromachined silicon microstructures, Microelectron. J, 37 (2006) 765-769.

DOI: 10.1016/j.mejo.2005.10.010

Google Scholar

[32] A. Dehzangi, F. Larki, E.B. Saion, S.D. Hatagalung, A.M. Abdullah, M.N. Hamidon, J. Hassan, Study the Characteristic of P-type Junction-less Side Gate Silicon Nanowire Transistor Fabricated by AFM Lithography, American Journal of Applied Science, 8 (2011).

DOI: 10.3844/ajassp.2011.872.877

Google Scholar

[33] A. Dehzangi, F. Larki, S. Hutagalung, E. Saion, A. Abdullah, M. Hamidon, B. Majlis, S. Kakooei, M. Navaseri, A. Kharazmi, Numerical investigation and comparison with experimental characterisation of side gate p-type junctionless silicon transistor in pinch-off state, Micro Nano Lett, 7 (2012).

DOI: 10.1049/mnl.2012.0590

Google Scholar

[34] S.D. Hutagalung, T. Darsono, K.A. Yaacob, Z.A. Ahmad, Effects of Tip Voltage and Writing Speed on the Formation of Silicon Oxide Nanodots Patterned by Scanning Probe Lithography, Journal of Scanning Probe Microscopy, 2, 1 (2007) 28-31.

DOI: 10.1166/jspm.2007.009

Google Scholar

[35] B. Sorée, W. Magnus, M. Szepieniec, W. Vandenberghe, A. Verhulst, G. Pourtois, G. Groeseneken, S. De Gendt, M. Heyns, Novel device concepts for nanotechnology: the nanowire pinch-off fet and graphene tunnelfet, ECS Transactions, 28 (2010) 15-26.

DOI: 10.1149/1.3367932

Google Scholar

[36] F. Larki, A. Dehzangi, A. Abedini, A.M. Abdullah, E.B. Saion, S.D. Hutagalung, M.N. Hamidon, J. Hassan, Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography, Beilstein J. Nanotechnol, 3 (2012).

DOI: 10.3762/bjnano.3.91

Google Scholar

[37] Y.K. Choi, D. Ha, T.J. King, J. Bokor, Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs, Jpn. J. Appl. Phys, 42 (2003).

DOI: 10.1143/jjap.42.2073

Google Scholar

[38] V. Bouchiat, M. Faucher, T. Fournier, B. Pannetier, C. Thirion, W. Wernsdorfer, N. Clement, D. Tonneau, H. Dallaporta, S. Safarov, Resistless patterning of quantum nanostructures by local anodization with an atomic force microscope, Microelectron. Eng, 61 (2002).

DOI: 10.1016/s0167-9317(02)00524-5

Google Scholar