[1]
H.G. Virani, S. Gundapaneni, A. Kottantharayil, Double Dielectric Spacer for the Enhancement of Silicon p-Channel Tunnel Field Effect Transistor Performance, Jpn. J. Appl. Phys, 50 (2011) 04DC04.
DOI: 10.7567/jjap.50.04dc04
Google Scholar
[2]
R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High- /metal-gate stack and its MOSFET characteristics, IEEE Electron Device Lett, 25 (2004) 408-410.
DOI: 10.1109/led.2004.828570
Google Scholar
[3]
G. Lansbergen, R. Rahman, C. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. Hollenberg, S. Rogge, Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET, Nat. Phys, 4 (2008) 656-661.
DOI: 10.1038/nphys994
Google Scholar
[4]
B. Yang, K. Buddharaju, S. Teo, N. Singh, G. Lo, D. Kwong, Vertical silicon-nanowire formation and gate-all-around MOSFET, IEEE Electron Device Lett., 29 (2008) 791-794.
DOI: 10.1109/led.2008.2000617
Google Scholar
[5]
J. Colinge, C. Lee, A. Afzalian, N. Dehdashti, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, SOI gated resistor: CMOS without junctions, IEEE 2009, pp.1-2.
DOI: 10.1109/soi.2009.5318737
Google Scholar
[6]
J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, Nanowire transistors without junctions, Nat Nanotechnol, 5 (2010) 225-229.
DOI: 10.1038/nnano.2010.15
Google Scholar
[7]
P. Campbell, E. Snow, P. McMarr, Fabrication of nanometer scale side gated silicon field effect transistors with an atomic force microscope, Appl. Phys. Lett, 66 (1995) 1388.
DOI: 10.1063/1.113210
Google Scholar
[8]
E. Snow, P. Campbell, P. McMarr, Fabrication of silicon nanostructures with a scanning tunneling microscope, Appl. Phys. Lett, 63 (1993) 749-751.
DOI: 10.1063/1.109924
Google Scholar
[9]
I. Ionica, L. Montes, S. Ferraton, J. Zimmermann, L. Saminadayar, V. Bouchiat, Field effect and Coulomb blockade in silicon on insulator nanostructures fabricated by atomic force microscope, Solid-State Electron, 49 (2005) 1497-1503.
DOI: 10.1016/j.sse.2005.07.012
Google Scholar
[10]
G. Pennelli, Top down fabrication of long silicon nanowire devices by means of lateral oxidation, Microelectron. Eng, 86 (2009) 2139-2143.
DOI: 10.1016/j.mee.2009.02.032
Google Scholar
[11]
J. Martinez, R.V. Martínez, R. Garcia, Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography, Nano Lett, 8 (2008) 3636-3639.
DOI: 10.1021/nl801599k
Google Scholar
[12]
I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process, Sensors and Actuators A: Physical, 87 (2001) 163-171.
DOI: 10.1016/s0924-4247(00)00481-7
Google Scholar
[13]
G. Pennelli, M. Piotto, G. Barillaro, Silicon single-electron transistor fabricated by anisotropic etch and oxidation, Microelectron. Eng, 83 (2006) 1710-1713.
DOI: 10.1016/j.mee.2006.01.144
Google Scholar
[14]
A. Dehzangi, A.M. Abdullah, F. Larki, S.D. Hutagalung, E.B. Saion, M.M.N. Hamidon, J. Hassan, Y. Gharayebi, Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography, Nanoscale Res. Lett., 7 (2012).
DOI: 10.1186/1556-276x-7-381
Google Scholar
[15]
F. Larki, S.D. Hutagalung, A. Dehzangi, E.B. Saion, A. Abedini, A.A. Makarimi, M.N. Hamidon, J. Hassan, Electronic Transport Properties of Junctionless Lateral Gate Silicon Nanowire Transistor Fabricated by Atomic Force Microscope Nanolithography, Microelectron and Solid State Electron, 1 (2012).
DOI: 10.4028/www.scientific.net/nh.4.33
Google Scholar
[16]
A. Dehzangi, F. Larki, E. Saion, S.D. Hutagalung, M. Hamidon, J. Hassan, Field effect in silicon nanostructure fabricated by Atomic Force Microscopy nano lithography, IEEE Regional Symposium on Micro and Nanoelectronics (RSM), IEEE Xplore Digital Library, Kota Kinabalu, 2011, pp.104-107.
DOI: 10.1109/rsm.2011.6088302
Google Scholar
[17]
A. Nazarov, J. Colinge, F. Balestra, J.P. Raskin, F. Gamiz, V. Lysenko, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Springer Verlag2011.
DOI: 10.1007/978-3-642-15868-1
Google Scholar
[18]
W. Kern, D.A. Puotinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA rev, 31 (1970) 187-206.
Google Scholar
[19]
T.H. Fang, Mechanisms of nanooxidation of Si (100) from atomic force microscopy, Microelectron. J, 35 (2004) 701-707.
DOI: 10.1016/j.mejo.2004.06.022
Google Scholar
[20]
K. Morimoto, F. Pérez-Murano, J. Dagata, Density variations in scanned probe oxidation, Appl. Surf. Sci, 158 (2000) 205-216.
DOI: 10.1016/s0169-4332(00)00017-9
Google Scholar
[21]
H. Kuramochi, K. Ando, H. Yokoyama, Effect of humidity on nano-oxidation of p-Si (001) surface, Surf. Sci, 542 (2003) 56-63.
DOI: 10.1016/s0039-6028(03)00912-9
Google Scholar
[22]
D. Ricci, P.C. Braga, Recognizing and avoiding artifacts in AFM imaging, Methods In Molecular Biology-Clifton Then Totowa-, 242 (2004) 25-38.
DOI: 10.1385/1-59259-647-9:25
Google Scholar
[23]
S. Youn, C. Kang, Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (1 0 0) surface, Wear, 261 (2006) 328-337.
DOI: 10.1016/j.wear.2005.11.007
Google Scholar
[24]
S.A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S.N. Port, D.J. Schiffrin, Inhibition of pyramid formation in the etching of Si p (100) in aqueous potassium hydroxide-isopropanol. Journal of Micromechanics and Microengineering, 5(3), (1999) 209.
DOI: 10.1088/0960-1317/5/3/002
Google Scholar
[25]
H.G.G. Philipsen, J.J. Kelly, Influence of chemical additives on the surface reactivity of Si in KOH solution, Electrochim. Acta, 54 (2009) 3526-3531.
DOI: 10.1016/j.electacta.2008.12.044
Google Scholar
[26]
M. Yun, Investigation of KOH Anisotropic Etching for the Fabrication of Sharp Tips in Silicon-on-Insulator (SOI) Material, J. Korean Phys. Soc, 37 (2000) 605-610.
DOI: 10.3938/jkps.37.605
Google Scholar
[27]
I. Zubel, M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sensors and Actuators A: Physical, 93 (2001) 138-147.
DOI: 10.1016/s0924-4247(01)00648-3
Google Scholar
[28]
C.R. Yang, P.Y. Chen, C.H. Yang, Y.C. Chiou, R.T. Lee, Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions, Sensors and Actuators A: Physical, 119 (2005) 271-281.
DOI: 10.1016/j.sna.2004.09.017
Google Scholar
[29]
H. Camon, Z. Moktadir, Simulation of silicon etching with KOH, Microelectron. J, 28 (1997) 509-517.
DOI: 10.1016/s0026-2692(96)00067-5
Google Scholar
[30]
W. Haiss, P. Raisch, L. Bitsch, R.J. Nichols, X. Xia, J.J. Kelly, D.J. Schiffrin, Surface termination and hydrogen bubble adhesion on Si (1 0 0) surfaces during anisotropic dissolution in aqueous KOH, J. Electroanal. Chem, 597 (2006) 1-12.
DOI: 10.1016/j.jelechem.2006.07.027
Google Scholar
[31]
K. Biswas, S. Das, S. Kal, Analysis and prevention of convex corner undercutting in bulk micromachined silicon microstructures, Microelectron. J, 37 (2006) 765-769.
DOI: 10.1016/j.mejo.2005.10.010
Google Scholar
[32]
A. Dehzangi, F. Larki, E.B. Saion, S.D. Hatagalung, A.M. Abdullah, M.N. Hamidon, J. Hassan, Study the Characteristic of P-type Junction-less Side Gate Silicon Nanowire Transistor Fabricated by AFM Lithography, American Journal of Applied Science, 8 (2011).
DOI: 10.3844/ajassp.2011.872.877
Google Scholar
[33]
A. Dehzangi, F. Larki, S. Hutagalung, E. Saion, A. Abdullah, M. Hamidon, B. Majlis, S. Kakooei, M. Navaseri, A. Kharazmi, Numerical investigation and comparison with experimental characterisation of side gate p-type junctionless silicon transistor in pinch-off state, Micro Nano Lett, 7 (2012).
DOI: 10.1049/mnl.2012.0590
Google Scholar
[34]
S.D. Hutagalung, T. Darsono, K.A. Yaacob, Z.A. Ahmad, Effects of Tip Voltage and Writing Speed on the Formation of Silicon Oxide Nanodots Patterned by Scanning Probe Lithography, Journal of Scanning Probe Microscopy, 2, 1 (2007) 28-31.
DOI: 10.1166/jspm.2007.009
Google Scholar
[35]
B. Sorée, W. Magnus, M. Szepieniec, W. Vandenberghe, A. Verhulst, G. Pourtois, G. Groeseneken, S. De Gendt, M. Heyns, Novel device concepts for nanotechnology: the nanowire pinch-off fet and graphene tunnelfet, ECS Transactions, 28 (2010) 15-26.
DOI: 10.1149/1.3367932
Google Scholar
[36]
F. Larki, A. Dehzangi, A. Abedini, A.M. Abdullah, E.B. Saion, S.D. Hutagalung, M.N. Hamidon, J. Hassan, Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography, Beilstein J. Nanotechnol, 3 (2012).
DOI: 10.3762/bjnano.3.91
Google Scholar
[37]
Y.K. Choi, D. Ha, T.J. King, J. Bokor, Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs, Jpn. J. Appl. Phys, 42 (2003).
DOI: 10.1143/jjap.42.2073
Google Scholar
[38]
V. Bouchiat, M. Faucher, T. Fournier, B. Pannetier, C. Thirion, W. Wernsdorfer, N. Clement, D. Tonneau, H. Dallaporta, S. Safarov, Resistless patterning of quantum nanostructures by local anodization with an atomic force microscope, Microelectron. Eng, 61 (2002).
DOI: 10.1016/s0167-9317(02)00524-5
Google Scholar