Theoretical Study of Spin Conduction in the Ni/DTE/Ni Nanohybrid

Article Preview

Abstract:

The photoswitching molecule dithienylethene (DTE) is an interesting candidate for constructing optoelectronic molecular devices since it can be made to switch between a closed and an open conformation using light. We here report computations, based on density functional theory (DFT) and the non-equilibrium Green function (NEGF) method, of the spin-resolved conductance of the two DTE isomers attached to spin-polarized nickel leads. Results are compared and contrasted to those of other contact materials (nonmagnetic Ni, Ag, and Au), analyzing the physical origins of the various features in the transmission function. It was found rather surprisingly, that the two spin channels in the Ni/DTE/Ni device have almost identical I-V characteristics, despite one channel being d-dominated and the other one s-dominated. It was also observed that the Ni-based device exhibits a sustained high conductance ratio also for high bias - a property that may be of relevance in future device design. Furthermore, two computational schemes for calculating the conductance were compared and analyzed. It was found that even for very small bias the molecular orbital polarization was decisive for spin-related properties such as the spin current ratio and magneto-resistance in the Ni/DTE/Ni device.

You have full access to the following eBook

Info:

[1] A.H. Flood, J. F. Stoddart, D.W. Steuerman, J.R. Heath, Whence molecular electronics?, Science 306 (2004) 2055-2056.

DOI: 10.1126/science.1106195

Google Scholar

[2] I.A. Campbell, Strong and weak ferromagnetism in Ni-Fe alloys, J. Phys. F: Met. Phys. 4 (1974), L181-L183.

DOI: 10.1088/0305-4608/4/8/003

Google Scholar

[3] A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comp. Mater. Sci. 28 (2003) 155-168.

DOI: 10.1016/s0927-0256(03)00104-6

Google Scholar

[4] D. Dulic, S.J. van der Molen, T. Kudernac, H.T. Jonkman, J.J.D. de Jong, T.N. Bowden, J. van Esch, B.L. Feringa, B.J. van Wees, One-way optoelectronic switching of photochromic molecules on gold, Phys. Rev. Lett. 91 (2003) 207402.

DOI: 10.1103/physrevlett.91.207402

Google Scholar

[5] N. Katsonis, T. Kudernac, M. Walko, S.J. van der Molen, B.J. van Wees, B.L. Feringa, Reversible conductance switching of single diarylethenes on a gold surface, Adv. Mater. 18 (2006) 1397-1400.

DOI: 10.1002/adma.200600210

Google Scholar

[6] K. Matsuda, H. Yamaguchi, T. Sakano, M. Ikeda, N. Tanifuji, M. Irie, Conductance Photoswitching of Diarylethene-Gold Nanoparticle Network Induced by Photochromic Reaction, J. Phys. Chem. C 112 (2008) 17005-17010.

DOI: 10.1021/jp807479g

Google Scholar

[7] A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J. van Wees, B.L. Feringa, P.W. Blom, B. de Boer, Reversible conductance switching in molecular devices, Adv. Mater. 20 (2008) 1467-1473.

DOI: 10.1002/adma.200800053

Google Scholar

[8] S.J. van der Molen, J. Liao, T. Kudernac, J.S. Agustsson, L. Bernard, M. Calame, B.J. van Wees, B.L. Feringa, C. Schöneberger, Light-Controlled Conductance Switching of Ordered Metal-Molecule-Metal Devices, Nano Lett. 9 (2009) 76-80.

DOI: 10.1021/nl802487j

Google Scholar

[9] J. He, F. Chen, P.A. Liddell, J. Andreasson, S.D. Straight, D. Gust, T.A. Moore, A.L. Moore, J. Li, O.F. Sankey, S.M. Linday, Switching of a photochromic molecule on gold electrodes: single-molecule measurements, Nanotechnology 16 (2005) 695-702.

DOI: 10.1088/0957-4484/16/6/012

Google Scholar

[10] E.S. Tam, J.J. Parks, W.W. Shum, Y.W. Zhong, M.B. Santiago-Berríos, X. Zheng, W. Yang, G.K.L. Chan, H.D. Abruña, D. Ralph, Single-Molecule Conductance of Pyridine-Terminated Dithienylethene Switch Molecules, ACS Nano 5 (2011) 5115-5123.

DOI: 10.1021/nn201199b

Google Scholar

[11] J. Li, G. Speyer, O.F. Sankey, Conduction switching of photochromic molecules, Phys. Rev. Lett. 93 (2004) 248302.

DOI: 10.1103/physrevlett.93.248302

Google Scholar

[12] M. Zhuang, M. Ernzerhof, Mechanism of a molecular electronic photoswitch, Phys. Rev. B 72 (2005) 073104.

Google Scholar

[13] M. Kondo, T. Tada, K.A. Yoshizawa, A theoretical measurement of the quantum transport through an optical molecular switch, Chem. Phys. Lett. 412 (2005) 55-59.

DOI: 10.1016/j.cplett.2005.05.126

Google Scholar

[14] Y. Tsuji, A. Staykov, K. Yoshizawa, Orbital view concept applied on photoswitching systems, Thin Solid Films 518 (2009) 444-447.

DOI: 10.1016/j.tsf.2009.07.037

Google Scholar

[15] M. Volmer, M. Stratmann, H. Viefhaus, Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols, Surface and Interface Analysis 16 (1990) 278-282.

DOI: 10.1002/sia.740160158

Google Scholar

[16] A. Odell, A. Delin, B. Johansson, I. Rungger, S. Sanvito, Investigation of the Conducting Properties of a Photoswitching Dithienylethene Molecule, ACS Nano 4 (2010) 2635-2642.

DOI: 10.1021/nn100217r

Google Scholar

[17] A. Odell, A. Delin, B. Johansson, K. Ulman, S. Narasimhan, I. Rungger, S. Sanvito, Comparison between s- and d-electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods, Phys. Rev. B 84 (2011) 165402.

DOI: 10.1103/physrevb.84.165402

Google Scholar

[18] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation , J. Phys.: Cond. Matt. 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[19] A.R. Rocha, V. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics , Nature Materials 4 (2005) 335-339.

DOI: 10.1038/nmat1349

Google Scholar

[20] A.R. Rocha, V. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B. 73 (2006) 085414.

DOI: 10.1103/physrevb.73.085414

Google Scholar

[21] I. Rungger I, S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B. 78 (2008) 035407.

DOI: 10.1103/physrevb.78.035407

Google Scholar

[22] C. Toher, A. Filippetti, S. Sanvito, K. Burke, Self-interaction errors in density-functional calculations of electronic transport, Phys. Rev. Lett. 95 (2005) 146402.

DOI: 10.1103/physrevlett.95.146402

Google Scholar

[23] N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993-2006.

DOI: 10.1103/physrevb.43.1993

Google Scholar

[24] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[25] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31 (1995) 6207-6215.

DOI: 10.1103/physrevb.31.6207

Google Scholar

[26] I. Rungger, O. Mryasov, S. Sanvito, Resonant electronic states and I-V curves of Fe/MgO/Fe(100) tunnel junctions, Phys. Rev. B 79 (2009) 094414.

DOI: 10.1103/physrevb.79.094414

Google Scholar

[27] S. Datta, Electrical resistance: an atomistic view, Nanotechnology 15 (2004) S433-S451.

DOI: 10.1088/0957-4484/15/7/051

Google Scholar

[28] C.D. Pemmaraju, I. Rungger, S. Sanvito, Ab initio calculation of the bias-dependent transport properties of Mn-12 molecules, Phys. Rev. B 80 (2009) 104422.

DOI: 10.1103/physrevb.80.104422

Google Scholar