[1]
M. Wanunu, R. Popovitz-Biro, H. Cohen, A. Vaskevich, I. Rubinstein, Coordination- based Gold Nanoparticle Layers, JACS 127 (25) (2005) 9207-15.
DOI: 10.1021/ja050016v
Google Scholar
[2]
W. Cai, T. Gao, H. Hong, Applications of Gold Nanoparticles in Cancer Nanotechnology, Nanotechnology, Science and Application (2008) 17-32.
Google Scholar
[3]
P. M. Tiwari, K. Vig, V.A. Dennis, S.R. Singh, Functionalized Gold Nanoparticles and Their Biomedical Applications, Nanomaterials 1(1) (2011) 31-63. (
DOI: 10.3390/nano1010031
Google Scholar
[4]
S. Thobhani, S. Attree, R. Boyd, N. Kumarswami, J. Noble, M. Szymanski, R.A. Porter, Bioconjugation and Characterisation of Gold Colloid-labelled Proteins, J. Immunol. Meth. 356 (1–2) (2010) 60-9.
DOI: 10.1016/j.jim.2010.02.007
Google Scholar
[5]
S. Darwich, K. Mougin, A. Rao, E. Gnecco, S. Jayaraman, H. Haidara, Manipulation of Gold Colloidal Nanoparticles With Atomic Force Microscopy In Dynamic Mode: Influence of Particle-Substrate Chemistry And Morphology, And Of Operating Conditions, Beilstein J. Nanotechnol. 2 (2011) 85-98.
DOI: 10.3762/bjnano.2.10
Google Scholar
[6]
K. Brown, D. Walter, Seeding of Colloidal Au Nanoparticle Solutions. Improved control of Particle Size and Shape, Chem. Mater. 12 (2) (2000) 306-313.
DOI: 10.1021/cm980065p
Google Scholar
[7]
N. Jana, L. Gearheart, Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles, Langmuir 37 (2001) 6782-6786.
DOI: 10.1021/la0104323
Google Scholar
[8]
G. Binnig, C.F. Quate, Atomic Force Microscope, Phys. Rev. Lett. 56 (1986) 930-933.
DOI: 10.1103/physrevlett.56.930
Google Scholar
[9]
N. Starostina, Part II: Sample Preparation for AFM Particle Characterization, Probe Microscopy, (2006).
Google Scholar
[10]
K.C. Grabar, K.R. Brown, C.D. Keating, S.J. Stranick, S. L. Tang, M. J. Natan, Nanoscale Characterization of Gold Colloid Monolayers: A Comparison of Four Techniques, Anal. Chem. 69 (3) (1997) 471-477.
DOI: 10.1021/ac9605962
Google Scholar
[11]
SR. Makhsin, KA. Razak, AA. Aziz, Study on Controlled Size, Shape and Dispersity of Gold Nanoparticles (AuNPs) Synthesized via Seeded-Growth Technique for Immunoassay Labeling, Adv. Mater. 364 (2012) 504-509.
DOI: 10.4028/www.scientific.net/amr.364.504
Google Scholar
[12]
J. Grobelny, F. Delrio, N. Pradeep, D. Kim, NIST - NCL Joint Assay Protocol, PCC-6 Size Measurement of Nanoparticles Using Atomic Force Microscopy, National Institute of Standards and Technology, 21702, (2009).
Google Scholar
[13]
R. Boyd, New Analysis Procedure for Fast and Reliable Size Measurement of Nanoparticles from Atomic Force Microscopy Images, J. Nanopart. Res. 13 (1) (2011) 105-113.
DOI: 10.1007/s11051-010-0007-2
Google Scholar
[14]
J. Sitterberg, A. Özcetin, C. Ehrhardt, U. Bakowsky, Utilising Atomic Force Microscopy for the Characterisation of Nanoscale Drug Delivery Systems, Eur. J. Pharm. Biopharm. 74 (1) (2010) 2-13.
DOI: 10.1016/j.ejpb.2009.09.005
Google Scholar
[15]
F. Zhang, K. Sautter, A. M. Larsen, D.A. Findley, R.C. Davis, H. Samha, M.R. Linford, Chemical Vapor Deposition of Three Aminosilanes on Silicon Dioxide: Surface Characterization, Stability, Effects of Silane Concentration, and Cyanine Dye Adsorption, Langmuir 26 (18) (2010) 14648-14654.
DOI: 10.1021/la102447y
Google Scholar
[16]
O. Couteau,G. Roebben, Measurement of The Size of Spherical Nanoparticles by Means of Atomic Force Microscopy, Meas. Sci. Technol. 22 (6) (2011). (.
DOI: 10.1088/0957-0233/22/6/065101
Google Scholar