Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition

Article Preview

Abstract:

Optimum thermal annealing process operating condition for nanostructured porous silicon (nPSi) by using radial basis function neural network (RBFNN) was proposed. The nanostructured porous silicon (nPSi) layer samples prepared by electrochemical etching process (EC) of p-type silicon wafers under different operatingconditions, such as varyingetchingtime (Et), annealing temperature (AT), and annealing time (At). The electrical properties of nPSi show an enhancement with thermal treatment.Simulation result shows that the proposed model can be used in the experimental results in this operating condition with acceptable small error. This model can be used in nanotechnology based photonic devices and gas sensors.

You have full access to the following eBook

Info:

[1] Y. Kumara, M. Herrera, F. Singh, S.F. Olive-Méndez, D. Kanjilal, S. Kumar, Cathodoluminescence and photoluminescence of swift ion irradiation modified zinc oxide-porous silicon nanocomposite, Mater. Sci. Eng. B 177 (2012) 1476-1481.

DOI: 10.1016/j.mseb.2012.01.017

Google Scholar

[2] W.S. Sarle, Neural Networks and Statistical Models, Proceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, NC (1994).

Google Scholar

[3] S. Brosse, J.F. Guegan, J.N. Tourenq, S. Lek, The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake, Ecol. Model. 120 (1999) 299-311.

DOI: 10.1016/s0304-3800(99)00110-6

Google Scholar

[4] A. Iglesias, B.A. Varela, J.M. Cotos, J.A. Taboada, C. Dafonte, A comparison between functional networks and artificial neural networks for the prediction of fishing catches, Neural Computing and Applications 13 (2004) 24-31.

DOI: 10.1007/s00521-004-0402-7

Google Scholar

[5] D. Srinivasan, W.S. Ng, A.C. Liew, Neural-Network-Based Signature Recognition for Harmonic Source Identification, IEEE Trans. Power Delivery 21(1) (2006) 398-405.

DOI: 10.1109/tpwrd.2005.852370

Google Scholar

[6] H.C. Lin, Intelligent Neural Network based Fast Power System Harmonic Detection, IEEE Trans. Ind. Electron. 54(1) (2007) 43-52.

DOI: 10.1109/tie.2006.888685

Google Scholar

[7] D. Qiu, D.-J. Zhang, W. You, N.-N. Zhang, H. Li, An application of prediction model in blast furnace hot metal silicon content based on neural network, IEEE (2009) 61-64. (ODI:

DOI: 10.1109/icacia.2009.5361151

Google Scholar

[8] D.S. Lee, S.W. Ban, B. Sang-Woo, M. Lee, D.-D. Dong,  Micro gas sensor array with neural network for recognizing combustible leakage gases, IEEE Sens. J. 5 (2005) 530-536.

DOI: 10.1109/jsen.2005.845186

Google Scholar

[9] M. Jaouadi, W. Dimassi, M. Gaidi, R. Chtourou, H. Ezzaouia, Nanoporous silicon membrane for fuel cells realized by electrochemical etching, Appl. Surf. Sci. 258 (2012) 5654-5658.

DOI: 10.1016/j.apsusc.2012.02.050

Google Scholar

[10] N. Naderi, M.R. Hashim, A combination of electroless and electrochemical etching methods for enhancing the uniformity of porous silicon substrate for light detection application, Appl. Surf. Sci. 258 (2012) 6436-6440.

DOI: 10.1016/j.apsusc.2012.03.056

Google Scholar

[11] K.A. Salman, K. Omar, Z. Hassan, The effect of etching time of porous silicon on solar cell performance, Superlattices Microstruct. 50 (2011) 647-658.

DOI: 10.1016/j.spmi.2011.09.006

Google Scholar

[12] P.H. Wu, I-K. Lin, H-Y. Yan, K-S. Ou, K-S. Chen, X. Zhang, Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing, Sens. Actuators, A 168 (2011) 117-126.

DOI: 10.1016/j.sna.2011.03.043

Google Scholar

[13] S.M. Sze, K.K. Ng, Physics of Semiconductor Device, Wiley-Interscience, New York (2007).

Google Scholar