Microwave Synthesis of Silver Nanoparticles

Article Preview

Abstract:

In this work, a green route for synthesis of Ag nanoparticles is presensted. For the synthesis of Ag nanoparticles, tulasi leaf extract (Ocimum leaf) in combination with microwave irradiation was used which yielded stable spherical Ag nanoparticle in the range of 5-50 nm. Surface morphology of nanoparticle was analyzed by XRD and TEM. UV-Vis analysis was also carried out to characterize the synthesized nanoparticles. The main feature of the process is that it is carried out in a very short span of time in comparison to other conventional physical, chemical and biological methods. Microwave assisted synthesis suppresses the enzymatic action to keep the process easy, fast and eco-friendly.

You have full access to the following eBook

Info:

[1] W. Jahn, Chemical aspects of the use of gold clusters in structural biology. J. Struct. Biol., 127 (1999) 106-112.

Google Scholar

[2] H.S. Naiwa Ed. Hand Book of Non-structural Materials and Nanotechnology Academic, Press New York 1-5 (2000).

Google Scholar

[3] C.J. Murphy, Sustainability as a Design Criterion in Nanoparticle Synthesis and Applications, J. Mater Chem.18 (2008) 2173-2176.

Google Scholar

[4] S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels, PNAS 97(3) (2000) 996-1001.

DOI: 10.1073/pnas.97.3.996

Google Scholar

[5] M. Rai, A. Yadav, A. Gade, Silver nanoparticles: A novel antimicrobial agent, Biotechnology Advances 27 (2009) 76-83.

Google Scholar

[6] J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1, J. Nanobiotechnol. 3(6) (2005). (.

DOI: 10.1186/1477-3155-3-6

Google Scholar

[7] R.M. Crooks, B.I. Lemon III, L. Sun, L.K. Yeung, M. Zhao, Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications, Top. Curr. Chem. 212 (2001) 82-135.

DOI: 10.1007/3-540-44924-8_3

Google Scholar

[8] D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin, Diode like electron transfer across nanostructured films containing redox ligands, J. Mater. Chem. 10 (2000) 79-83.

DOI: 10.1039/a902960e

Google Scholar

[9] I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper, Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films, Langmuir 19(11) (2003) 4831-4835.

DOI: 10.1021/la020710d

Google Scholar

[10] V.K. Sharma, R.A. Yngard, L. Yekaterina, Silver nanoparticles: Green synthesis and their antimicrobial activities, Colloid and Interface Science 145 (2009) 83-96.

DOI: 10.1016/j.cis.2008.09.002

Google Scholar

[11] B. Krishna, D.V. Goia Dan, Silver nanoparticles for printable electronic biological applications, J. Mater. Res. 24(9) (2009) 2828-2836.

DOI: 10.1557/jmr.2009.0336

Google Scholar

[12] R.M. Tripathi, A. Saxena, N. Gupta, H. Kapoor, R.P. Singh, High antibacterial activity of silver nanoballs against E.COLI MTCC 1302, S. TYPHIMURIUM MTCC 1254, B. SUBTILIS MTCC 1133 and P. AERUGINOSA MTCC 2295, Digest Journal of Nanomaterials and Biostrucutres 5(2) (2010) 323-330.

DOI: 10.55251/jmbfs.9387

Google Scholar

[13] L. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela, Electrochemical synthesis of silver nanoparticles, J. Phys. Chem. B 104 (2000) 9683-9688.

Google Scholar

[14] A. Taleb, C. Petit, M.P. Pileni, Synthesis of highly monodisperse silver nano particles from AOT reverse micelles, a way to 2D and 3D self organization, Chem. Mater. 9 (1997) 950.

DOI: 10.1021/cm960513y

Google Scholar

[15] N.A. Beguma, S. Mondalb, S. Basub, R.A. Laskara, D. Mandalb, Colloids Surf., B 71(1) (2009) 113-118.

Google Scholar

[16] L. Maggy, S. Gordon, Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochimica et Cosmochimic Acta 70(14) (2006) 3646-3661.

DOI: 10.1016/j.gca.2006.04.018

Google Scholar

[17] B. Nair, T. Pradeep, Coalescence of Nano clusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains, Crystal Growth & Design. 2(4) (2000) 293-298.

DOI: 10.1021/cg0255164

Google Scholar

[18] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wan, N. Gu, A cost-effective preparation method of Ba-hexaaluminate nanoparticles for catalytic combustion of methane, Mater. Lett. 61 (2007) 3935-3938.

DOI: 10.1016/j.matlet.2006.12.067

Google Scholar

[19] J.D. Holmes, P.R. Smith, R. Evans-Gowing, D.J. Richardson, D.A. Russel, J.R. Sodeau, Energy dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes, Arch. Microbiol. 163(2) (1995) 143-147.

DOI: 10.1007/bf00381789

Google Scholar

[20] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry , Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium Oxysporum, ChemBioChem 3 (2002) 461-463.

DOI: 10.1002/1439-7633(20020503)3:5<461::aid-cbic461>3.0.co;2-x

Google Scholar

[21] A. Ahmad, P. Mukherjee, S. Senapati, M. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular Biosynthesis of Silver Nanoparticles using the Fungus Fusarium Oxysporum, Colloids Surf. B 28 (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[22] C.B. Kuber, S.F. D'Souza, Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates, Colloids Surf. B 47 (2006) 160-164.

Google Scholar

[23] S.S. Shiv, R. Akhilesh, A. Absar, M. Sastry, Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275 (2004) 496-602.

DOI: 10.1016/j.jcis.2004.03.003

Google Scholar

[24] J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, M.J. Yacaman, Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants, Nano Letters 2 (2002) 397-401.

DOI: 10.1021/nl015673+

Google Scholar

[25] K. Mallikarjuna, G. Narasimha, G.R. Dillip, B. Praveen, B. Shreedhar, C.S. Lakshmi, B.V.S. Reddy, B.D.P. Raju, Green Synthesis fo silver nanoparticles using ocimum leaf extarct and thier characterization, Digest Journal of Nanomaterials and Biostructures, 6 (1) (2011) pp.181-186.

Google Scholar

[26] K. Yamasaki, M. Nakano, T. Kawahata, H. Mori, T. Otake, N. Ueba, I. Oishi, R. Inami, M.Yamane, M. Nakamura, H. Murata, T. Nakanishi, Anti-HIV-1 activity of herbs in Labiates, Biol. Pharm. Bull. 21(8) (1998) 829-833.

DOI: 10.1248/bpb.21.829

Google Scholar

[27] N. Ahmad, S. Sharma, V.N. Singh, S.F. Shamsi, A. Fatma, B.R. Mehta, Biosynthesis of Silver Nanoparticles from Desmodium triflorum, Novel Approach Towards Weed Utilization, Biotechnology Research International. 454090 (2011) 8.

DOI: 10.4061/2011/454090

Google Scholar

[28] S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Microwave-assisted rapid Synthesis of anisotropic Ag nanoparticles by solid state transformation, Nanotechnology. 19 (4) (2008) 045603.

DOI: 10.1088/0957-4484/19/04/045603

Google Scholar

[29] S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Thermal decomposition as route for silver nano particles, Nanoscale Research Letters. 2 (2008) 44-48.

DOI: 10.1007/s11671-006-9028-2

Google Scholar

[30] W.J. Sommer, M. Weck, Facile Functionalization of Gold Nanoparticles via Microwave-Assisted 1,3 Dipolar Cycloaddition, Langmuir 23 (2007) 11991-11995.

DOI: 10.1021/la7018742

Google Scholar

[31] J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, Microwave Enhanced Reaction Rates for nano particles synthesis, J. Am. Chem. Soc. 27 (2005) 15791-15800.

DOI: 10.1021/ja052463g

Google Scholar

[32] V. Polshettiwar, M.N. Nadagouda and R. S. Varma, Chem. Commun, (2008), 6318.

Google Scholar

[33] B. Baruwati, M. N. Nadagouda and R. S. Varma, Bulk Synthesis of Monodisperse Ferrite Nanoparticles at Water-Organic Interface under Conventional and Microwave Hydrothermal treatment and their surface functionalization, J. Phys. Chem. C 112 (2008) 18399-18404.

DOI: 10.1021/jp807245g

Google Scholar

[34] M. N. Nadagouda and R. S. Varma, Microwave-Assisted Shape-Controlled Bulk Synthesis of Ag and Fe Nanorods in Poly(ethylene glycol) Solutions, Cryst. Growth Des. 8(1) (2008) 291-295.

DOI: 10.1021/cg070473i

Google Scholar

[35] Stephan L, Mostafa A, El-Sayed J, Size and temperature dependence of the plasmon Absorption of colloidal gold nanoparticles, Phys. Chem. B 103 (1999) 4212-4217.

DOI: 10.1021/jp984796o

Google Scholar

[36] T.K. Jeorger, R. Jeorger, E. Olsson, C. Granqvist Bacteria as workers in the living factory:metal-accumulating bacteria and their potential for materials science, Biotechnol. 19(1) (2001) 15-20.

DOI: 10.1016/s0167-7799(00)01514-6

Google Scholar

[37] Q. Wu, H. Cao, Q. Luan, J. Zhang, Z Trends, Wang, J.H. Warner, A.A.R. Watt, Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications, Inorg. Chem. 47(13) (2008) 5882-5888.

DOI: 10.1021/ic8002228

Google Scholar