[1]
Nanotubes and Nanowires (Selected Topics in Electronics and Systems) by Peter John Burke, World Scientific Publishing Company, New York, (2007).
Google Scholar
[2]
S. Cho, Y.F. Chen, M.S. Fuhrer, Gate-tunable graphene spin valve. Appl. Phys. Lett. 91(12) (2007) 123105 (3 pages). http: /dx. doi. org/10. 1063/1. 2784934.
DOI: 10.1063/1.2784934
Google Scholar
[3]
F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. Santos, E. Deleporte, P. Roussignol, C. Delalande, C. Voisin, J. -S. Lauret, Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes. Phys. Rev. Lett. PRL 111 (2013) 137402.
DOI: 10.1103/physrevlett.111.137402
Google Scholar
[4]
Z. Osvath, G. Vertesy, L. Tapaszto, F. Weber, Z. Horvath, J. Gyulai, L. Biro, Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation. Phys. Rev. B: Condens. Matter 72 (2005) 045429.
Google Scholar
[5]
M. Freitag, M. Radosavljevic, W. Clauss, A. T. Johnson, Local electronic properties of single-wall nanotube circuits measured by conducting-tip AFM, Phys. Rev. B: Condens. Matter 62 (2000) 4.
DOI: 10.1103/physrevb.62.r2307
Google Scholar
[6]
B. Bhushan, X. Ling, Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy, Phys. Rev. B: Condens. Matter 78 (2008) 045429.
DOI: 10.1103/physrevb.78.045429
Google Scholar
[7]
T. Hertel, R. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B: Condens. Matter 58 (1998) 20.
DOI: 10.1103/physrevb.58.13870
Google Scholar
[8]
V. Meunier, Ph. Lambin, Tight-Binding Computation of the STM Image of Carbon Nanotubes, Phys. Rev. Lett. 81 N25 (1998) 5588-5591.
DOI: 10.1103/physrevlett.81.5588
Google Scholar
[9]
P. Lambin, G.I. Mark, V. Meunier, L. Biro, Computation of STM Images of Carbon Nanotubes, Int. J. Quantum Chem. 95 (2003) 493-503.
DOI: 10.1002/qua.10587
Google Scholar
[10]
T. Odom, J. -L. Huang, C. Lieber, STM studies of single-walled carbon nanotubes, J. Phys. Condens. Matter14 (2002) R145-R167.
Google Scholar
[11]
L. Venema, V. Meunier, P. Lambin, C. Dekker, Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B: Condens. Matter 61 N. 4 (2000) 2991-2996.
DOI: 10.1103/physrevb.61.2991
Google Scholar
[12]
P. Xu, Y. Yang, S. Barber, M. Ackerman, J. Schoelz, I. Kornev, S. Barraza-Lopez, L. Bellaiche, P. Thibado, Giant surface charge density of graphene resolved from scanning tunneling microscopy and first-principles theory, Phys. Rev. B: Condens. Matter 84 (2011).
DOI: 10.1103/physrevb.84.161409
Google Scholar
[13]
C. Lin, X. Huang, F. Ke, C. Jin, N. Tong, X. Yin, L. Gan, X. Guo, R. Zhao, W. Yang, E. Wang, Z. Hu, Quasi-one-dimensional graphene superlattices formed on high-index surfaces, Phys. Rev. B: Condens. Matter 89 (2014) 085416.
DOI: 10.1103/physrevb.89.085416
Google Scholar
[14]
L. Biedermann, M. Bolen, M. Capano, D. Zemlyanov, R. Reifenberger, Insights into few-layer epitaxial graphene growth on 4H-SiC(0001) substrates from STM studies, Phys. Rev. B: Condens. Matter 79 (2009) 125411.
DOI: 10.1103/physrevb.79.125411
Google Scholar
[15]
C. Riedl, U. Starke J. Bernhardt, M. Franke, K. Heinz, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces, Phys. Rev. B: Condens. Matter 76 (2007) 245406.
DOI: 10.1103/physrevb.76.245406
Google Scholar
[16]
S. Nie, N. Bartelt, J. Wofford, O. Dubon, K. McCarty, K. Thuermer, Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions, Phys. Rev. B: Condens. Matter 85 (2012) 205406.
DOI: 10.1103/physrevb.85.205406
Google Scholar
[17]
E. Voloshina, E. Fertitta, A. Garhofer, F. Mittendorfer, M. Fonin, A. Thissen, Yu. Dedkov Electronic structure and imaging contrast of graphene moiré on metals, Scientific Reports 3, (2013) Article number: 1072.
DOI: 10.1038/srep01072
Google Scholar
[18]
H. Kataura, Y. Kumazava, Y. Maniva, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes, Synth. Met. 103 (1999) 2555-2558.
DOI: 10.1016/s0379-6779(98)00278-1
Google Scholar
[19]
M. Ashino, A. Schwarz, T. Behnke, R. Wiesendanger, Atomic-Resolution Dynamic Force Microscopy and Spectroscopy of a Single-Walled Carbon Nanotube: Characterization of Interatomic van derWaals Forces, Phys. Rev. Lett. 93 (2004) 13.
DOI: 10.1103/physrevlett.93.136101
Google Scholar
[20]
M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds. ), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications of Topics in Applied Physics, vol. 80, Springer, Heidelberg, (2001).
DOI: 10.1007/3-540-39947-x
Google Scholar
[21]
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General Atomic and Molecular Electronic Structure System, J. Comput. Chem. 14 (1993).
DOI: 10.1002/jcc.540141112
Google Scholar