Carbon Molecules on a Copper Substrate

Article Preview

Abstract:

Semiconductor and metal carbon nanotubes were studied by scanning tunneling microscopy (STM) and spectral ellipsometry. STM measurements with spatial resolution up to 0.15 nm reveal spatially complicated structure of semiconductor nanotube-substrate interface layer. The measurements also registered graphene nanoclusters with hexagonal rings structure on copper. Quantum mechanical numerical calculations of electron density were performed on a carbon nanotube containing 40 atoms.

You might also be interested in these eBooks

Info:

Periodical:

Nano Hybrids (Volume 8)

Pages:

1-14

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nanotubes and Nanowires (Selected Topics in Electronics and Systems) by Peter John Burke, World Scientific Publishing Company, New York, (2007).

Google Scholar

[2] S. Cho, Y.F. Chen, M.S. Fuhrer, Gate-tunable graphene spin valve. Appl. Phys. Lett. 91(12) (2007) 123105 (3 pages). http: /dx. doi. org/10. 1063/1. 2784934.

DOI: 10.1063/1.2784934

Google Scholar

[3] F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. Santos, E. Deleporte, P. Roussignol, C. Delalande, C. Voisin, J. -S. Lauret, Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes. Phys. Rev. Lett. PRL 111 (2013) 137402.

DOI: 10.1103/physrevlett.111.137402

Google Scholar

[4] Z. Osvath, G. Vertesy, L. Tapaszto, F. Weber, Z. Horvath, J. Gyulai, L. Biro, Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation. Phys. Rev. B: Condens. Matter 72 (2005) 045429.

Google Scholar

[5] M. Freitag, M. Radosavljevic, W. Clauss, A. T. Johnson, Local electronic properties of single-wall nanotube circuits measured by conducting-tip AFM, Phys. Rev. B: Condens. Matter 62 (2000) 4.

DOI: 10.1103/physrevb.62.r2307

Google Scholar

[6] B. Bhushan, X. Ling, Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy, Phys. Rev. B: Condens. Matter 78 (2008) 045429.

DOI: 10.1103/physrevb.78.045429

Google Scholar

[7] T. Hertel, R. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B: Condens. Matter 58 (1998) 20.

DOI: 10.1103/physrevb.58.13870

Google Scholar

[8] V. Meunier, Ph. Lambin, Tight-Binding Computation of the STM Image of Carbon Nanotubes, Phys. Rev. Lett. 81 N25 (1998) 5588-5591.

DOI: 10.1103/physrevlett.81.5588

Google Scholar

[9] P. Lambin, G.I. Mark, V. Meunier, L. Biro, Computation of STM Images of Carbon Nanotubes, Int. J. Quantum Chem. 95 (2003) 493-503.

DOI: 10.1002/qua.10587

Google Scholar

[10] T. Odom, J. -L. Huang, C. Lieber, STM studies of single-walled carbon nanotubes, J. Phys. Condens. Matter14 (2002) R145-R167.

Google Scholar

[11] L. Venema, V. Meunier, P. Lambin, C. Dekker, Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B: Condens. Matter 61 N. 4 (2000) 2991-2996.

DOI: 10.1103/physrevb.61.2991

Google Scholar

[12] P. Xu, Y. Yang, S. Barber, M. Ackerman, J. Schoelz, I. Kornev, S. Barraza-Lopez, L. Bellaiche, P. Thibado, Giant surface charge density of graphene resolved from scanning tunneling microscopy and first-principles theory, Phys. Rev. B: Condens. Matter 84 (2011).

DOI: 10.1103/physrevb.84.161409

Google Scholar

[13] C. Lin, X. Huang, F. Ke, C. Jin, N. Tong, X. Yin, L. Gan, X. Guo, R. Zhao, W. Yang, E. Wang, Z. Hu, Quasi-one-dimensional graphene superlattices formed on high-index surfaces, Phys. Rev. B: Condens. Matter 89 (2014) 085416.

DOI: 10.1103/physrevb.89.085416

Google Scholar

[14] L. Biedermann, M. Bolen, M. Capano, D. Zemlyanov, R. Reifenberger, Insights into few-layer epitaxial graphene growth on 4H-SiC(0001) substrates from STM studies, Phys. Rev. B: Condens. Matter 79 (2009) 125411.

DOI: 10.1103/physrevb.79.125411

Google Scholar

[15] C. Riedl, U. Starke J. Bernhardt, M. Franke, K. Heinz, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces, Phys. Rev. B: Condens. Matter 76 (2007) 245406.

DOI: 10.1103/physrevb.76.245406

Google Scholar

[16] S. Nie, N. Bartelt, J. Wofford, O. Dubon, K. McCarty, K. Thuermer, Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions, Phys. Rev. B: Condens. Matter 85 (2012) 205406.

DOI: 10.1103/physrevb.85.205406

Google Scholar

[17] E. Voloshina, E. Fertitta, A. Garhofer, F. Mittendorfer, M. Fonin, A. Thissen, Yu. Dedkov Electronic structure and imaging contrast of graphene moiré on metals, Scientific Reports 3, (2013) Article number: 1072.

DOI: 10.1038/srep01072

Google Scholar

[18] H. Kataura, Y. Kumazava, Y. Maniva, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes, Synth. Met. 103 (1999) 2555-2558.

DOI: 10.1016/s0379-6779(98)00278-1

Google Scholar

[19] M. Ashino, A. Schwarz, T. Behnke, R. Wiesendanger, Atomic-Resolution Dynamic Force Microscopy and Spectroscopy of a Single-Walled Carbon Nanotube: Characterization of Interatomic van derWaals Forces, Phys. Rev. Lett. 93 (2004) 13.

DOI: 10.1103/physrevlett.93.136101

Google Scholar

[20] M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds. ), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications of Topics in Applied Physics, vol. 80, Springer, Heidelberg, (2001).

DOI: 10.1007/3-540-39947-x

Google Scholar

[21] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General Atomic and Molecular Electronic Structure System, J. Comput. Chem. 14 (1993).

DOI: 10.1002/jcc.540141112

Google Scholar