Hybrid Structure for Solar Cells Based on SWCNT/CdS

Article Preview

Abstract:

Recently, we considered the application of carbon nanotubes as the buffer layer between the CdS and Cu (In,Ga)Se2 thin film solar cells. In this work the structure of a p-n heterojunction solar cell is analyzed including the single walled carbon nanotubes as the absorber and CdS as n-type semiconductor window layer. The interface and current-voltage characteristics of this proposed structure are studied exerting the general formulation of the p-n heterojunction solar cells proposed by Fonash. We propose that SWCNTs/CdS heterojunction solar cell can overlap with a main part of the sunlight spectrum leading to improve efficiency and short circuit current. The interesting property of such devices is that the light can inter to the device from the absorber as carbon nanotubes are transparent semiconductor nanostructures. The results of this study can be extended to graphene nanolayers as it has been extensively studied by the PV community in recent years.

You might also be interested in these eBooks

Info:

Periodical:

Nano Hybrids (Volume 8)

Pages:

15-26

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Lett. 4 (2004) 35-39.

DOI: 10.1021/nl034841q

Google Scholar

[2] M.A. Osman, D. Srivastava, Temperature Dependence of Thermal Conductivity of Single Wall Carbon Nanotubes, Nanotechnology 12 (2001) 21-24.

Google Scholar

[3] N.E. Gorji, Quantitative analysis of the optical losses in CZTS thin-film semiconductors, IEEE Trans. Nanotechnol. 13 (4) (2014) 743-748.

DOI: 10.1109/tnano.2014.2318057

Google Scholar

[4] B. Shan, K. Cho, Ab initio study of Schottky barriers at metal-nanotube contacts, Phys. Rev. B: Condens. Matter 23 (2004) 233405-233408.

DOI: 10.1103/physrevb.70.233405

Google Scholar

[5] N.E. Gorji, Mohammad Houshmand, Carbon nanotubes application as buffer layer in Cu(In, Ga)Se2 based thin film solar cells, Physica E 50 (2013) 122-125.

DOI: 10.1016/j.physe.2013.03.001

Google Scholar

[6] B.J. Landi, R.P. Raffaelle, S.L. Castro, S.G. Bailey, Single wall carbon nanotube–polymer solar cells, Prog. Photovoltaics Res. Appl. 13 (2) (2005) 165-172.

DOI: 10.1002/pip.604

Google Scholar

[7] S. Bhattacharyya, E. Kymakis, G.J. Amaratunga, Photovoltaic Properties of Dye Functionalized Single-Wall Carbon Nanotube/Conjugated Polymer Devices, Chemical Materials 16 (2004) 4819-4823.

DOI: 10.1021/cm0496063

Google Scholar

[8] P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan, Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes, Phys. Review Lett. 82 (1999) 2548-2551.

DOI: 10.1103/physrevlett.82.2548

Google Scholar

[9] S. Gunes, H. Neugebauer, N.S. Sariciftci, Hybrid solar cells based on dye-sensitized nanoporousTiO2 electrodes and conjugated polymers as hole transport materials, Chem. Rev. 107 (2007) 1324-1338.

DOI: 10.1021/cr050149z

Google Scholar

[10] G. Xosrovashvili, N.E. Gorji, Numerical simulation of carbon nanotubes/GaAs hybrid PV devices with AMPS-1D, Int. J. Photoenergy (2014) 784857-788561.

DOI: 10.1155/2014/784857

Google Scholar

[11] N.E. Gorji, Modelling the impedance of thin film PV in SCLC dominant region, Physica B 431 (2013) 44-48.

DOI: 10.1016/j.physb.2013.08.018

Google Scholar

[12] H. Houshmand, M.H. Zandi, N.E. Gorji, Modeling the impedance of nanostructured PV in simulink/matlab, Mod. Phys. Lett. B 27 (20) (2013) 1350139-1350141.

DOI: 10.1142/s021798491350139x

Google Scholar

[13] A. Mebadi, H. Houshmand, M.H. Zandi, N.E. Gorji, Simulations of the intermediate bandwidth fluctuations in nanostructured PV, Physica E 53 (2013) 130-136.

DOI: 10.1016/j.physe.2013.04.024

Google Scholar

[14] T.S. Te Velde, Mathematical analysis of a heterojunction, applied to the copper sulphide-cadmium sulphide solar cell, Solid-State Electron. 16 (1973) 1305-1314.

DOI: 10.1016/0038-1101(73)90043-9

Google Scholar

[15] Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Wang Z, Luo J, Cao A, D. Wu, Double-walled carbon nanotube solar cells, Nano Lett. 8 (2007) 2317-2321.

DOI: 10.1021/nl070961c

Google Scholar

[16] W.A. Anderson, R.A. Milano, I-V characteristics for silicon Schottky solar cells, in: Proceeding of IEEE, 63 (1975) 206-208.

DOI: 10.1109/proc.1975.9727

Google Scholar

[17] S. Fonash, General formulation of the current-voltage characteristic of a pn heterojunction solar cell, Appl. Phys. 51 (1980) 2115-2118.

DOI: 10.1063/1.327883

Google Scholar

[18] S.M. Sze, Physics of Semiconductor Devices, (2nd edition), New York, John Wiley & Sons (1981).

Google Scholar

[19] M. Houshmand, M.H. Zandi, S.S. Dehkordi, M.D. Perez, N.E. Gorji, An equivalent circuit model proposed for the intermediate band nanostructured quantum dot solar cells, Modern Phys. Lett. B 26 (2012) 1250133-1250142.

DOI: 10.1142/s0217984912501333

Google Scholar

[20] A.B. Phillips, R.R. Khanal, P.J. Roland, Victor V. Plotnikov, et al., Wiring-up Carbon Single Wall Nanotubes to Polycrystalline Inorganic Semiconductor Thin Films: Low-Barrier, Copper-Free Back Contact to CdTe Solar Cells, Nano Lett. 13 (2013).

DOI: 10.1021/nl402659c

Google Scholar