[1]
T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber, Adv. Mater. 22 (2010) E156-E159.
DOI: 10.1002/adma.200904155
Google Scholar
[2]
J.J. Scragg, P.J. Dale, L.M. Peter, Towards sustainable materials for solar energy conversion: Preparation and photoelectrochemical characterization of Cu2ZnSnS4, Electrochem. Commun. 10 (2008) 639-642.
DOI: 10.1016/j.elecom.2008.02.008
Google Scholar
[3]
C. Grasso, K. Ernst, R. Knenkamp, M.C. Lux-Steiner, M. Burgelman, Photoelectrical Characterisation and Modelling of the Eta-Solar Cell, Proceedings of the 17th European Photovoltaic Solar Energy Conference, I. (2001) pp.211-214.
Google Scholar
[4]
N.E. Gorji, A. Mebadi, M. Houshmand, M.H. Zandi, Simulations of the Intermediate Bandwidth Fluctuations in Nanostructured PV, Physica E 53 (2013) 130-136.
DOI: 10.1016/j.physe.2013.04.024
Google Scholar
[5]
N.E. Gorji, M. Houshmand, Carbon nanotubes application as buffer layer in Cu(In, Ga)Se2 based thin film solar cells, Physica E 50 (2013) 122-125.
DOI: 10.1016/j.physe.2013.03.001
Google Scholar
[6]
B. Minnaert, C. Grasso, M. Burgelman, An effective medium model versus a network model for nanostructured solar cells, R. C. Chimie 9 (2006) 735-741.
DOI: 10.1016/j.crci.2005.02.038
Google Scholar
[7]
H. Zhou, T. Song, C. Chung, B. Lei, B. Bob, R. Zhu, H. Duan, C. Jung, Y. Yang, Solution-Processed TiO2 Nanoparticles as the Window Layer for CuIn(S, Se)2 Devices, Adv. Energy Mater. 2 11 (2012) 13681374-13681378.
DOI: 10.1002/aenm.201200115
Google Scholar
[8]
C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, J. Appl. Phys. 107 (2010) 0537101-9.
Google Scholar
[9]
B. Mendis, M. Goodman, J. Major, A. Taylor, K. Durose, D. Halliday, The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material, J. Appl. Phys. 112 (2012).
DOI: 10.1063/1.4769738
Google Scholar
[10]
M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical stimulation of thin film solar cells, Thin Solid Films 535 1 (2013) 296-301.
DOI: 10.1016/j.tsf.2012.10.032
Google Scholar
[11]
S. Degrave, M. Burgelman, P. Nollet, Modelling of polycrystalline thin film solar cells: New features in scaps version 2. 3, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (2003) 487-490.
Google Scholar
[12]
M. Kurokawa, K. Tanaka, K. Moriya, H. Uchik, Fabrication of ThreeDimensional-Structure Solar Cell with Cu2ZnSnS4, Japanese J. of Appl. Phys. 51 (2012) 10NC33-10NC37.
Google Scholar
[13]
A. Duta, TiO2 thin layers with controlled morphology for ETA solar cells, Thin Solid Film, 511-512 (2006) 195-198.
DOI: 10.1016/j.tsf.2005.12.100
Google Scholar
[14]
W. Baek, S. Yo. H. Lee, C. Yun, Y. Kim, Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores, Sol. Energy Mater. & Sol. Cells 93 (2009) 1587-1591.
DOI: 10.1016/j.solmat.2009.04.014
Google Scholar
[15]
B.R. Saunders, Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges, J. Colloid Interface Sci. 369 (2012) 1-15.
DOI: 10.1016/j.jcis.2011.12.016
Google Scholar
[16]
M. Nanu, J. Schoonman, A. Goossens, Raman and PL study of defect-ordering in CuInS2 thin films, Adv. Mater. (Weinheim, Ger) 16 453 (2004) 0245121-6.
DOI: 10.1016/j.tsf.2003.10.118
Google Scholar
[17]
W. Smith, H. Fakhouri, J. Pulpytel, F. Arefi, Control of the optical and crystalline properties of TiO2 in visible-light active TiO2/TiN bi-layer thin-film stacks, J. Appl. Phys. 111 (2012) 024301-8.
DOI: 10.1063/1.3671428
Google Scholar
[18]
Landolt-Brnstein New Series-Semiconductors: Physics of ternary compounds, Ed. O. Madelung (1983).
Google Scholar
[19]
V.I. Klimov, V.A. Karavanskii, Mechanisms for optical nonlinearities and ultrafast carrier dynamics in CuxS nanocrystals, Phys. Rev. B 54 (1996) 8087-8088.
DOI: 10.1364/nlo.1996.nthe.17
Google Scholar
[20]
J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of .. electrodeposition-annealing route, Thin Solid Films 517 (2009) 24812484.
DOI: 10.1016/j.tsf.2008.11.022
Google Scholar
[21]
Y. Wang, C. Li, X. g Yin, H. Wang, H. Gonga, Cu2ZnSnS4 (CZTS) Application in TiO2 Solar Cell as Dye, ECS Journal of Solid State Science and Technology 27 (2013) Q95-Q98.
DOI: 10.1149/2.005307jss
Google Scholar
[22]
X. Xin, M. He,W. Han, J. Jung, Z. Lin, Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells, Angewandte Chemie. 123 (2011) 11943-11946.
DOI: 10.1002/ange.201104786
Google Scholar
[23]
R.O. Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, M. Gratzel, The influence of TiO2 particle size in TiO2/ CuInS2 nanocomposite solar cells, Adv. Funct. Mater. 16 (2006) 1566-1570.
DOI: 10.1002/adfm.200500647
Google Scholar
[24]
R. Loef, J. Schoonman, A. Goossens, Elucidation of homojunction formation in CuInS2 with impedance spectroscopy, J. Appl. Phys. 102 (2007) 024512-024517.
DOI: 10.1063/1.2759470
Google Scholar
[25]
M. Houshmand, M.H. Zandi, N.E. Gorji, modeling the impedance of nanostructured pv in SIMULINK/MATLAB, Phys. Lett. B, 27 (2013) 1350139-1350150.
DOI: 10.1142/s021798491350139x
Google Scholar
[26]
N.E. Gorji, Modelling the impedance of thin film PV in SCLC dominant region, Physica B 431 (2013) 44-48.
DOI: 10.1016/j.physb.2013.08.018
Google Scholar
[27]
N. Eshaghi Gorji, M.H. Zandi, M. Houshmand, M. Shokri, Transition and recombination rates in intermediate band solar cells, Scientia Iranica 19 (3) (2012) 806-811.
DOI: 10.1016/j.scient.2012.02.005
Google Scholar
[28]
N.E. Gorji, Low-Dimensional Systems and Nanostructures, Transition and recombination rates in intermediate band solar cells, Physica E 44 (7-8) (2012) 1608-1611.
DOI: 10.1016/j.physe.2012.04.004
Google Scholar