Numerical Analysis of TiO2/Cu2ZnSnS4 Nanostructured PV Using SCAPS-1D

Article Preview

Abstract:

A nanostructured solar cells consist of a nonporous n-type TiO2 nanoparticles and a p-type semiconductor Cu2ZnSnS4 (CZTS) thin film has been numerically simulated using SCAPS-1D tool. The performed theoretically analysis is compared with the experimental reported data. The band diagram, IV characteristics and quantum efficiency of this structure is considered. The benefit of both TiO2 and CZTS material leads to more than 10% conversion efficiency which is promising between the nanoparticle-based heterojunbctions proposed for PV applications.

You might also be interested in these eBooks

Info:

Periodical:

Nano Hybrids (Volume 8)

Pages:

27-38

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber, Adv. Mater. 22 (2010) E156-E159.

DOI: 10.1002/adma.200904155

Google Scholar

[2] J.J. Scragg, P.J. Dale, L.M. Peter, Towards sustainable materials for solar energy conversion: Preparation and photoelectrochemical characterization of Cu2ZnSnS4, Electrochem. Commun. 10 (2008) 639-642.

DOI: 10.1016/j.elecom.2008.02.008

Google Scholar

[3] C. Grasso, K. Ernst, R. Knenkamp, M.C. Lux-Steiner, M. Burgelman, Photoelectrical Characterisation and Modelling of the Eta-Solar Cell, Proceedings of the 17th European Photovoltaic Solar Energy Conference, I. (2001) pp.211-214.

Google Scholar

[4] N.E. Gorji, A. Mebadi, M. Houshmand, M.H. Zandi, Simulations of the Intermediate Bandwidth Fluctuations in Nanostructured PV, Physica E 53 (2013) 130-136.

DOI: 10.1016/j.physe.2013.04.024

Google Scholar

[5] N.E. Gorji, M. Houshmand, Carbon nanotubes application as buffer layer in Cu(In, Ga)Se2 based thin film solar cells, Physica E 50 (2013) 122-125.

DOI: 10.1016/j.physe.2013.03.001

Google Scholar

[6] B. Minnaert, C. Grasso, M. Burgelman, An effective medium model versus a network model for nanostructured solar cells, R. C. Chimie 9 (2006) 735-741.

DOI: 10.1016/j.crci.2005.02.038

Google Scholar

[7] H. Zhou, T. Song, C. Chung, B. Lei, B. Bob, R. Zhu, H. Duan, C. Jung, Y. Yang, Solution-Processed TiO2 Nanoparticles as the Window Layer for CuIn(S, Se)2 Devices, Adv. Energy Mater. 2 11 (2012) 13681374-13681378.

DOI: 10.1002/aenm.201200115

Google Scholar

[8] C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, J. Appl. Phys. 107 (2010) 0537101-9.

Google Scholar

[9] B. Mendis, M. Goodman, J. Major, A. Taylor, K. Durose, D. Halliday, The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material, J. Appl. Phys. 112 (2012).

DOI: 10.1063/1.4769738

Google Scholar

[10] M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical stimulation of thin film solar cells, Thin Solid Films 535 1 (2013) 296-301.

DOI: 10.1016/j.tsf.2012.10.032

Google Scholar

[11] S. Degrave, M. Burgelman, P. Nollet, Modelling of polycrystalline thin film solar cells: New features in scaps version 2. 3, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (2003) 487-490.

Google Scholar

[12] M. Kurokawa, K. Tanaka, K. Moriya, H. Uchik, Fabrication of ThreeDimensional-Structure Solar Cell with Cu2ZnSnS4, Japanese J. of Appl. Phys. 51 (2012) 10NC33-10NC37.

Google Scholar

[13] A. Duta, TiO2 thin layers with controlled morphology for ETA solar cells, Thin Solid Film, 511-512 (2006) 195-198.

DOI: 10.1016/j.tsf.2005.12.100

Google Scholar

[14] W. Baek, S. Yo. H. Lee, C. Yun, Y. Kim, Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores, Sol. Energy Mater. & Sol. Cells 93 (2009) 1587-1591.

DOI: 10.1016/j.solmat.2009.04.014

Google Scholar

[15] B.R. Saunders, Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges, J. Colloid Interface Sci. 369 (2012) 1-15.

DOI: 10.1016/j.jcis.2011.12.016

Google Scholar

[16] M. Nanu, J. Schoonman, A. Goossens, Raman and PL study of defect-ordering in CuInS2 thin films, Adv. Mater. (Weinheim, Ger) 16 453 (2004) 0245121-6.

DOI: 10.1016/j.tsf.2003.10.118

Google Scholar

[17] W. Smith, H. Fakhouri, J. Pulpytel, F. Arefi, Control of the optical and crystalline properties of TiO2 in visible-light active TiO2/TiN bi-layer thin-film stacks, J. Appl. Phys. 111 (2012) 024301-8.

DOI: 10.1063/1.3671428

Google Scholar

[18] Landolt-Brnstein New Series-Semiconductors: Physics of ternary compounds, Ed. O. Madelung (1983).

Google Scholar

[19] V.I. Klimov, V.A. Karavanskii, Mechanisms for optical nonlinearities and ultrafast carrier dynamics in CuxS nanocrystals, Phys. Rev. B 54 (1996) 8087-8088.

DOI: 10.1364/nlo.1996.nthe.17

Google Scholar

[20] J.J. Scragg, P.J. Dale, L.M. Peter, Synthesis and characterization of .. electrodeposition-annealing route, Thin Solid Films 517 (2009) 24812484.

DOI: 10.1016/j.tsf.2008.11.022

Google Scholar

[21] Y. Wang, C. Li, X. g Yin, H. Wang, H. Gonga, Cu2ZnSnS4 (CZTS) Application in TiO2 Solar Cell as Dye, ECS Journal of Solid State Science and Technology 27 (2013) Q95-Q98.

DOI: 10.1149/2.005307jss

Google Scholar

[22] X. Xin, M. He,W. Han, J. Jung, Z. Lin, Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells, Angewandte Chemie. 123 (2011) 11943-11946.

DOI: 10.1002/ange.201104786

Google Scholar

[23] R.O. Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, M. Gratzel, The influence of TiO2 particle size in TiO2/ CuInS2 nanocomposite solar cells, Adv. Funct. Mater. 16 (2006) 1566-1570.

DOI: 10.1002/adfm.200500647

Google Scholar

[24] R. Loef, J. Schoonman, A. Goossens, Elucidation of homojunction formation in CuInS2 with impedance spectroscopy, J. Appl. Phys. 102 (2007) 024512-024517.

DOI: 10.1063/1.2759470

Google Scholar

[25] M. Houshmand, M.H. Zandi, N.E. Gorji, modeling the impedance of nanostructured pv in SIMULINK/MATLAB, Phys. Lett. B, 27 (2013) 1350139-1350150.

DOI: 10.1142/s021798491350139x

Google Scholar

[26] N.E. Gorji, Modelling the impedance of thin film PV in SCLC dominant region, Physica B 431 (2013) 44-48.

DOI: 10.1016/j.physb.2013.08.018

Google Scholar

[27] N. Eshaghi Gorji, M.H. Zandi, M. Houshmand, M. Shokri, Transition and recombination rates in intermediate band solar cells, Scientia Iranica 19 (3) (2012) 806-811.

DOI: 10.1016/j.scient.2012.02.005

Google Scholar

[28] N.E. Gorji, Low-Dimensional Systems and Nanostructures, Transition and recombination rates in intermediate band solar cells, Physica E 44 (7-8) (2012) 1608-1611.

DOI: 10.1016/j.physe.2012.04.004

Google Scholar